
GOVERNMENT OF TAMILNADU
DIRECTORATE OF TECHNICAL EDUCATION

CHENNAI – 600 025
STATE PROJECT COORDINATION UNIT

Diploma in Computer Engineering

Course Code: 1052

M – Scheme

e-TEXTBOOK
on

C PROGRAMMING

for

III Semester Diploma in Computer Engineering

Convener for Computer Engineering Discipline:

Mr. D. Arulselvan,

HOD /PDCA,
Thiagarajar Polytechnic College ,
Salem - 636 005.

Team Members for C Programming:

D.Arulselvan

HoD / PDCA
Thiagarajar Polytechnic College,
Salem – 636 005.

V. Saranya

HoD / Computer Engineering
Thiagarajar Polytechnic College,
Salem – 636 005.

M.Gomathi,

Lecturer/ Computer Engineering
Thiagarajar Polytechnic College,
Salem – 636 005.

Validated by

Mr. B.Krishnakumar

HOD / Computer Engineering
Arasan Ganesan Polytechnic College
Sivakasi

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU
DIPLOMA IN COMPUTER ENGINEERING

M- SCHEME

Course Name : COMPUTER ENGINEERING

Subject Code : 35233

Semester : III

Subject Title : C PROGRAMMING

TEACHING & SCHEME OF EXAMINATION

No. of weeks per semester: 15 weeks

Subject

Instructions
Examination

Max. Marks

Duration Hours /

week

Hours /

Semester

Internal

Assessment

Board

Examinations
Total

Data
Structures

Using C

5 75 25 75 100 3 Hours

TOPICS AND ALLOCATION OF HOURS

Unit No Topic No of Hours

I PROGRAM DEVELOPMENT AND INTRODUCTION TO C 12

II DECISION MAKING, ARRAYS AND STRINGS 13

III FUNCTIONS, STRUCTURES AND UNIONS 13

IV POINTERS 14

V FILE MANAGEMENT & PREPROCESSORS 13

CONTINUOUS ASSESSMENT TEST AND MODEL EXAMS 10

TOTAL 75

RATIONALE

C’ is the most widely used computer language, which is being taught as a core course. C is general

purpose structural language that is powerful, efficient and compact, which combines features of high

level language and low-level language. It is closer to both Man and Machine. Due to this inherent

flexibility and tolerance it is suitable for different development environments. Due to these powerful

features, C has not lost its importance and popularity in recently developed and advanced software

industry. C can also be used for system level programming and it is still considered as first priority

programming language. This course covers the basic concepts of C. This course will act as

“Programmingconcept developer” for students. It will also act as “Backbone” for subjects like OOPS,

Visual Basic, Windows Programming, JAVA etc.

OBJECTIVES

At the end of the Course, the students will be able to

• Define Program, Algorithm and flow chart

• List down and Explain various program development steps

• Write down algorithm and flow chart for simple problems.

• Describe the concepts of Constants, Variables, Data types and operators. Develop programs

using input and output operations.

• Use of command line arguments & Explain compiler controlled directives.

• Understand the structure and usage of different looping and branching statements. Define

arrays and string handling functions.

• Explain user-defined functions, structures and union.

• Define pointers and using the concept of Pointers.

• To understand the dynamic data structure and memory management.

DETAILED SYLLABUS

UNIT I PROGRAM DEVELOPMENT & INTRODUCTION TO C …. 12 HOURS

1.1 Program Algorithm & flow chart: Program development cycle- Programming language

levels & features. Algorithm – Properties & classification of Algorithm, flow chart –

symbols, importance & advantage of flow chart.

2 Hrs

1.2 Introduction C: - History of C – features of C structure of C program –Compiling, link &
run a program. Diagrammatic representation of program execution process.

2 Hrs

1.3. Variables, Constants & Data types: C character set-Tokens- Constants- Key words –
identifiers and Variables – Data types and storage – Data type Qualifiers – Declaration of
Variables – Assigning values to variable - Declaring variables as constants-Declaration –
Variables as volatile- Overflow & under flow of data

3 Hrs

1.4 C Operators: Arithmetic, Logical, Assignment Relational, Increment and Decrement,
Conditional, Bitwise, Special Operator precedence and Associativity. C expressions –
Arithmetic expressions – Evaluation of expressions- Type cast operator

3 Hrs

1.5 I/O statements: Formatted input, formatted output, Unformatted I/O statements 2 Hrs

UNIT II DECISION MAKING,ARRAYS and STRINGS …… 13 HOURS

2.1.
Branching: Introduction – Simple if statement – if –else – else-if ladder , nested if-else-
Switch statement – go statement – Simple programs.

4 Hrs

2.2.
Looping statements: While, do-while statements, for loop, break & continue statement
– Simple programs

3 Hrs

2.3.
Arrays: Declaration and initialization of One dimensional, Two dimensional and
character arrays – Accessing array elements – Programs using arrays

3 Hrs

2.4
Strings : Declaration and initialization of string variables, Reading String, Writing Strings
– String handling functions (strlen(),strcat(),strcmp()) – String manipulation programs

3 Hrs

UNIT III FUNCTIONS, STRUCTURES AND UNIONS …… 13 HOURS

3.1. Built –in functions: Math functions – Console I/O functions – Standard I/O functions –
Character Oriented functions – Simple programs 3 Hrs

3.2 User defined functions: Defining functions & Needs-, Scope and Life time of Variables, ,
Function call, return values, Storage classes, Category of function – Recursion – Simple
programs

6 Hrs

3.3 Structures and Unions: Structure – Definition, initialization, arrays of structures, Arrays
with in structures, structures within structures, Structures and functions – Unions –
Structure of Union – Difference between Union and structure – Simple programs.

4 Hrs

UNIT IV POINTERS ……. 14 HOURS

4.1. Pointers: Definition – advantages of pointers – accessing the address of a variable
through pointers - declaring and initializing pointers- pointers expressions, increment and
scale factor- array of pointers- pointers and array - pointer and character strings –
function arguments – pointers to functions – pointers and structures – programs using
pointer.

10 Hrs

4.2. Dynamic Memory Management: introduction – dynamic memory allocation – allocating
a block memory (MALLOC) – allocating multiple blocks of memory (CALLOC) –releasing
the used space: free – altering the size of a block (REALLOC) – simple programs

4 Hrs

UNIT V FILE MANAGEMENT AND PREPROCESSORS ….... 13 HOURS

5.1 File Management: Introduction-Defining and opening a file-closing a file-Input/ Output
operations on files—Error handling during I/O operations –Random Access to files—
Programs using files

8 Hrs

5.2 Command line arguments: Introduction – argv and argc arguments – Programs using
command Line Arguments –Programs 2 Hrs

5.3 The preprocessor: Introduction – Macro Substitution, File inclusion, Compiler control
directives. 3 Hrs

TEXT BOOKS

S.No TITLE AUTHOR PUBLISHER
YEAR OF PUBLISHING

/ EDITION

1.
Programming in
ANSI C

Prof. E.
BALAGURUSAMY

TATA McGRAWHILL
publications.

4th Edition

REFERENCES

S.No TITLE AUTHOR PUBLISHER
YEAR OF

PUBLISHING/EDIT
ION

1.
Programming and

Problem solving using C

ISRD Group,
Lucknow

Tata Mc-GrawHill,

NewDelhi

Sixth Reprint

2010

2. Let us C Yeswanth Kanetkar BPB Publications Fourth Revised

3. A TextBook on C E.Karthikeyan
PHI Private

Limited, New Delhi

2008

4. Programming in C D.Ravichandran

New Age

International

Publishers,Chennai

FirstEdition1996

Reprint2011

5.
Computer Concepts

and
Dr.S.S.Khandare

S.Chand & Company

Ltd. New Delhi
FirstEdition2010

6.
Complete Knowledge in

C

Sukhendu Dey,

Debobrata

Dutta

Narosa Publishing

House, New Delhi
Reprint2010

7. Programming in C Reema Theraja
Oxford University

Press
FirstEdition2011

8.
Practical C

Programming
Steve Oualline

O’Reilly,

Shroff

Eleventh Indian

ReprintOct2010

CONTENTS

Unit No

Name of the Unit

Page No

I PROGRAM DEVELOPMENT & INTRODUCTION TO C 01

II DECISION MAKING, ARRAYS and STRINGS 48

III FUNCTIONS, STRUCTURES AND UNIONS 96

IV POINTERS 134

V MANAGEMENT AND PREPROCESSORS 165

1

OBJECTIVES

At the end of the unit, the students will be able to

▪ Explain program Development Life Cycle

▪ Understand algorithm and its properties

▪ Understand flow chart and its uses

▪ Write algorithms for simple programs

▪ Draw flow chart for simple programs

▪ Understand the basic structure of C

▪ Obtain a preliminary idea of the keywords in C

▪ Learn the data types, variables, constants, operators and expressions in C

▪ Get acquainted with the rules of types of expressions in C.

▪ Learn input / output functions.

▪ Differentiate formatted and unformatted I/O functions.

INTRODUCTION

Before any problem can be solved using a computer, the person writing the program must be

familiarized with the problem and with the way in which it has to be solved. The problem solved is to

be represented by small and clear steps by using algorithms and flow charts.

A program is a set of instructions to solve a particular problem. C is a programming language , is to be

considered as a middle level language . This unit gives an overview of C language and explains about

the structure of C program. Variables and constants joined by various operators form an expression,

Basic I/O functions are used to accept data and produces output. Different types of values may be

passed to the computer from the keyboard. Such different types for the values are called as data types.

This unit will discuss in detail about the data types, variables, constants, various categories of

operators , expressions, type modifiers and Input – Output operations

1.1 PROGRAM , ALGORITHM & FLOW CHART

 1.1.1 PROGRAM - DEFINITION

A computer program is a sequence of instructions written to perform a specified task with a computer.

Programs are written in a programming language. These programs are then translated into machine

code by a compiler and linker so that the computer can execute it directly or run it line by line

(interpreted) by an interpreter program.

 1.1.2 PROGRAM DEVELOPMENT LIFE CYCLE

The process of developing software, according to the desired needs of a user, by following a basic

set of interrelated procedures is known as Program Development Life Cycle (PDLC)

UNIT – I

PROGRAM DEVELOPMENT & INTRODUCTION TO C

http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/Computer
http://cplus.about.com/od/introductiontoprogramming/g/machinecodedefn.htm
http://cplus.about.com/od/introductiontoprogramming/g/machinecodedefn.htm
http://cplus.about.com/od/glossary/g/gloscompiled.htm
http://cplus.about.com/od/glossar1/g/linkdefn.htm
http://cplus.about.com/od/introductiontoprogramming/g/interpreterdefn.htm

2

PDLC includes various set of procedures and activities that are isolated and sequenced for learning

purposes but in real life they overlap and are highly interrelated.

Tasks of Program Development

The basic set of procedures that are followed by various
organizations in their program development methods are as
follows:

1. Program specification.
2. Program Design.
3. Program coding.
4. Program testing.
5. Program documentation.
6. Program Maintenance.

Fig No 1.1. Program Development Life Cycle

1. PROGRAM SPECIFICATION

This stage is the formal definition of the task. It includes the specification of inputs and outputs,
processing requirements, system constraints, and error handling methods.

This step is very critical for the completion of a satisfactory program. It is impossible to solve a problem

by using a computer, without a clear understanding and identification of the problem. Inadequate

identification of problem leads to poor performance of the system. The programmer should invest a

significant portion of his time in problem identification.

2. PROGRAM DESIGN

In this phase the design of the system is designed. The Design is developed by the analysts and

designers. The system analyst design the logical design for the designers and then designer get the

basic idea of designing the software design of Front end and back end both.

The system analyst and Designer work together in designing the software design and designer design

the best software design under the guidance of system analyst.

3.PROGRAM CODING

This step transforms the program logic design documents into a computer language format. This stage

translates program design into computer instructions. These instructions are the actual program. It is

the crucial job of programmer to develop a code by following the flowchart and that code is written

in any computer language.

4. PROGRAM TESTING

Program testing is the process of checking program, to verify that it satisfies its requirements and to

detect errors. These errors can be of any type - Syntax errors, Run-time errors and Logical errors .

Testing include necessary steps to detect all possible errors in the program. This can be done either at

a module level known as unit testing or at program level known as integration testing.

Syntax errors also known as compilation errors are caused by violation of the grammar rules of the

language. The compiler detects, isolate these errors and terminate the source program after listing

the errors. Common syntax errors include

3

• missing or misplaced; or },

• missing return type for a procedure,

• Missing or duplicate variable declaration.

• Type errors that include

• type mismatch on assignment,

• type mismatch between actual and formal parameters.

Logical errors: These are the errors related with the logic of the program execution. These errors are

not detected by the compiler and are primarily due to a poor understanding of the problem or a lack

of clarity of hierarchy of operators. Such errors cause incorrect result.

Errors such as mismatch of data types or array out of bound error are known as execution errors or

runtime errors. These errors are generally undetected by the compiler, so programs with run-time

error will run but produce erroneous results.

Debugging is a methodical process of finding and reducing the number of bugs in a computer program

making it behave as expected.

5. PROGRAM DOCUMENTATION

This task is performed by the programmer to make the code user friendly i.e. if new person got the

code then he/she can easily understand that which statement performed what task.

Proper documentation is useful in the testing and debugging stages. It is also essential in the

maintenance and redesign stages. A properly documented program can be easily reused when

needed; an undocumented program usually requires so much extra work that the programmer might

as well start from scratch. The techniques commonly used in documentation are flowcharts,

comments, memory maps, parameter and definition lists, and program library forms.

Proper documentation combines all or most of the methods mentioned. Documentation is a time-

consuming task. The programmer performs this task simultaneously with the design, coding,

debugging and testing stages of software development. Good documentation simplifies maintenance

and redesign, and makes subsequent tasks simpler.

6. PROGRAM MAINTENANCE

During this phase, the program is actively used by the users. If the user encounters any problem or

wants any enhancement, then repeat all the phases from the starting, so that the encountered

problem is solved or enhancement is added.

 1.1.3 PROGRAMMING LANGUAGES AND FEATURES

Programming language is a set of grammatical rules for instructing a computer to perform specific

tasks. The term programming language usually refers to high-level languages, such as BASIC, C, C++,

COBOL, FORTRAN, Ada, and Pascal. There are two major types of programming languages. These are

Low Level Languages and High Level Languages. Low Level languages are further divided in to Machine

language and Assembly language.

LOW LEVEL LANGUAGES

Low level languages are machine oriented and require knowledge of computer hardware and its

configuration.

http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/H/high_level_language.html
http://www.webopedia.com/TERM/B/BASIC.html
http://www.webopedia.com/TERM/C/C.html
http://www.webopedia.com/TERM/C/C_plus_plus.html
http://www.webopedia.com/TERM/C/COBOL.html
http://www.webopedia.com/TERM/F/FORTRAN.html
http://www.webopedia.com/TERM/A/Ada.html
http://www.webopedia.com/TERM/P/Pascal.html

4

(a) Machine Language

Machine Language is the only language that is directly understood by the computer. It does not need

any translator program. It is written as strings of 1's (one) and 0’s (zero). For example, a program

instruction may look like this:

1011000111101

It is not an easy language to learn because of its difficult to understand. It is efficient for the computer

but very inefficient for programmers. It is considered to the first generation language. It is also difficult

to debug the program written in this language.

Advantage : Machine language programs are run very fast because no translation program is required

for the CPU.

Disadvantages

1. It is very difficult to program in machine language. The programmer should know details of

hardware to write program.

2. The programmer should remember a lot of codes to write a program which results in program

errors.

3. It is difficult to debug the program.

(b) Assembly Language

The computer can handle numbers and letter. Therefore, some combination of letters can be used to

substitute for number of machine codes. The set of symbols and letters forms the Assembly Language

and a translator program is required to translate the assembly Language to machine language. This

translator program is called `Assembler'.

Advantages:

1. Assembly Language is easier to understand and saves a lot of time and effort of the

programmer.

2. It is easier to correct errors and modify program instructions.

3. Assembly Language has the same efficiency of execution as the machine level language.

Because this is one-to-one translator between assembly language program and its

corresponding machine language program.

Disadvantages:

1. The assembly language is machine dependent. A program written for one computer might not

run in other computers with different hardware configuration.

HIGH LEVEL LANGUAGES

The assembly language and machine level language require deep knowledge of computer hardware.

But High-level languages are machine independent. Programs are written in English-like statements.

As high – level languages are not directly executable, translators (compilers or interpreters) are used

to convert them into machine language.

Advantages of High Level Languages

1. These are easier to learn. Less time is required to write programs.

2. They are easier to maintain. Programs written in high-level languages are easier to debug.

3. Programs written in high-level languages are machine –dependent. Therefore programs

developed on one computer can be run on another with little or no modifications.

5

2.

 1.1.4 FEATURES OF A GOOD PROGRAMMING LANGUAGES

Simplicity: A good programming language must be simple and easy to learn and use. For example,

BASIC is liked by many programmers only because of its simplicity. Thus, a good programming

language should provide a programmer with a clear, simple and unified set of concepts which can be

easily grasped.

Naturalness: A good language should be natural for the application area it has been designed. That

is, it should provide appropriate operators, data structures, control structures, and a natural syntax in

order to facilitate the users to code their problem easily and efficiently.

Abstraction: Abstraction means the ability to define and then use complicated structures. The degree

of abstraction allowed by a programming language directly affects its writability.

Efficiency: The program written in good programming language are efficiently translated into

machine code, are efficiently executed, and acquires as little space in the memory as possible.

Compactness: In a good programming language, programmers should be able to express intended

operation concisely.

Locality: A good programming language should be such that while writing a program, a programmer

need not jump around visually as the text of the program is prepared. This allows the programmer to

concentrate almost solely on the part of the program around the statements currently being worked

with.

Extensibility: A good programming language should allow extension through simple, natural, and

elegant mechanisms. Almost all languages provide subprogram definition mechanisms for this

purpose.

1.

 1.1.5 ALGORITHM - DEFINITION

1.1.5.1. ALGORITHM - DEFINITION

Algorithm is a step-by-step method of solving a problem or making decisions.

1.

 1.1.6 PROPERTIES OF ALGORITHM

1. Finiteness: An algorithm must always terminate after a finite number of steps. It means after every

step one reach closer to solution of the problem and after a finite number of steps algorithm

reaches to an end point.

2. Definiteness: Each step of an algorithm must be precisely defined. It is done by well thought actions

to be performed at each step of the algorithm. Also the actions are defined unambiguously for each

activity in the algorithm.

3. Input: Any operation to be performed needs some beginning value/quantities associated with

different activities in the operation. So the value/quantities are given to the algorithm before it

begins.

4. Output: One always expects output/result (expected value/quantities) in terms of output from an

algorithm. The result may be obtained at different stages of the algorithm. If some result is from

the intermediate stage of the operation then it is known as intermediate result and result obtained

6

at the end of algorithm is known as end result. The output expected value/quantities always have

a specified relation to the inputs.

5. Effectiveness: Algorithms to be developed/written using basic operations.

Any algorithm should have all these five properties otherwise it will not fulfill the basic objective of

solving a problem in finite time.

•

 1.1.7 CLASSIFICATION OF ALGORITHMS

An algorithm may be implemented according to different basic principles.

• Recursive or iterative: A recursive algorithm is one that calls itself repeatedly until a certain

condition matches. It is a method common to functional programming. Iterative algorithms use

repetitive constructs like loops.

• Logical or procedural: An algorithm may be viewed as controlled logical deduction. A logic

component expresses the axioms which may be used in the computation and a control component

determines the way in which deduction is applied to the axioms.

• Serial or parallel: Algorithms are usually discussed with the assumption that computers execute

one instruction of an algorithm at a time. This is a serial algorithm, as opposed to parallel

algorithms, which take advantage of computer architectures to process several instructions at

once. They divide the problem into sub-problems and pass them to several processors.

• Deterministic or non-deterministic: Deterministic algorithms solve the problem with a predefined

process whereas non-deterministic algorithm must perform guesses of best solution at each step

through the use of heuristics.

•

 1.1.8 ALGORITHMS LOGIC

Algorithmic logic is classified into three types. They are: (i)

Sequential Logic (ii) Selection or Conditional Logic and (iii)

Repetition logic. All the computing is done using only these types.

SEQUENTIAL LOGIC

As the name suggests, Sequential Logic consist of one action

followed by another in a logical progression. In other words,

perform operation A and then perform operation B and so

on. This structure is represented by writing one operation

after another.

Fig No 1.2 Example for Sequential Logic

START

READ r

AREA = 3.14 *r *r

CIRCUM = 2 * 3.14 *r

 PRINT

AREA,CIRCUM

STOP

7

SELECTION OR CONDITIONAL LOGIC

Selection Logic allows the program to make a choice

between two alternate paths, whether it is true (1)

or false (0). First statement is a conditional

statement.

If the condition is true, Operation 1 is performed;

otherwise Operation 2 will be performed. For

example, if A>B, then print A, else print B

 Fig No 1.3 Example for Selection or Conditional Logic

This is called the “if…Then…Else” structure. If the answer is “Yes”, then the control will be transferred

to some other path. Otherwise, if the answer is “No”, then the execution goes to the next statement

without doing anything.

ITERATION OR REPETITION LOGIC

Repetition Control Structure is also termed as Iteration Control Structure

or Program Loop. Repetition causes an interruption in the sequence of

processing. In the Repetitive Control Structure, an operation or a set of

operations is repeated as long as some condition is satisfied. The

performed operation will be the same, but the data will change every

time.

 Fig No 1.4 Example for Repetition Logic

When a sequence of statements is repeated against a condition, it is said

to be in a loop. Using looping, the programmer avoids writing the same

set of instructions again and again.

Some examples on developing algorithms using step-form:

• Each algorithm will be logically enclosed by two statements START and STOP.

• Input or READ statements are used to accept data from user.

• PRINT statement is used to display any user message. The message will be displayed to be

enclosed within quotes.

• The arithmetic operators =, +, *, -, / will be used in the expression.

• The commonly used relational operatos will include : >, <. >=, <=. +, !=

• The most commonly used logical operators will be AND, OR, NOT

Example 1 : To make a coffee

Step1: Take proper quantity of water in a cooking pan

Step2: Place the pan on a gas stow and light it

Step3: Add Coffee powder when it boils

Step4: Put out the light and add sufficient quantity of sugar and milk

Step5: Pour into cup and have it.

8

Example 2 : To find the area and circumference of a circle

1. Start

2. Read the radius of the circle r

3. Find the area and circumference of the circle using formula

Area =3.14*r*r

Circum =2*3.14*r

4. Print the area and circumference of the circle

5. Stop

•

 1.1.9 FLOW CHART

A flowchart is a diagrammatic representation that shows the sequence of operations to be performed

to get the solution of a problem.

IMPORTANCE OF FLOW CHART

Flowcharts facilitate communication between programmers and business people. Flowcharts play a

vital role in the programming of a problem and are quite helpful in understanding the logic of

complicated and lengthy problems. Once the flowchart is drawn, it becomes easy to write the program

in any high level language. Flowcharts are helpful in explaining the program to others. Hence, a

flowchart is a must for the better documentation of a complex program.

FLOWCHART SYMBOLS

S.No Name of the Symbol Symbol Meaning

1 Start /Stop (Oval)
 Represents the start and end of the

program

2 Processing (Rectangle)
 Represents arithmetic and data

movement instructions.

3
Input / Output

(Parallelogram)

 It is used to represent the input or output

function.

4. Decisions (Diamond)

 Represents decision making and

branching. It has one entry and two or

more exit paths

5. Connector (Circle)
 Used to join two parts of a program

6 Flow lines (Arrow lines)

 Used to link various boxes together to

form the flow chart and indicate the

direction of the flow.

9

GUIDELINES FOR DRAWING FLOWCHART

• First of all list all necessary requirements in a logical order.

• The flowchart should be clear and easy to understand. There should not be any ambiguity in

understanding the flowchart.

• The usual direction of the flow of a procedure or system is from left to right or top to bottom.

• Only one flow line should come out from a process symbol.

 or

• Only one flow line should enter a decision symbol, but two or three flow lines, one

for each possible answer, should leave the decision symbol.

• Only one flow line is used in conjunction with terminal symbol.

• If the flowchart becomes complex, it is better to use connector symbols to reduce the number of

flow lines. Avoid the intersection of flow lines for more effective and better way of communication.

• Ensure that the flowchart has a logical start and finish.

• It is useful to test the validity of the flowchart by passing through it with a simple test data.

ADVANTAGES OF USING FLOWCHARTS

1. Communication: Flowcharts are better way of communicating the logic of a system to all

concerned.

2. Effective analysis: With the help of flowchart, problem can be analysed in more effective way.

3. Proper documentation: Program flowcharts serve as a good program documentation, which is

needed for various purposes.

4. Efficient Coding: The flowcharts act as a guide or blueprint during the systems analysis and

program development phase.

5. Proper Debugging: The flowchart helps in debugging process.

6. Efficient Program Maintenance: The maintenance of operating program becomes easy with the

help of flowchart. It helps the programmer to put efforts more efficiently on that part

LIMITATIONS OF USING FLOWCHARTS

1. Complex logic: Sometimes, the program logic is quite complicated. In that case, flowchart

becomes complex and clumsy.

2. Alterations and Modifications: If alterations are required the flowchart may require re-drawing

completely.

10

FLOW CHART FOR FINDING THE AREA AND CIRCUMFERENCE OF CIRCLE

Algorithm and flow chart for finding the product of first n natural numbers

ALGORITHM FLOW CHART

1. Start
2. Read the number n.
3. Set the values P 1, Count1
4. While (count<=n)
 do
 P P X count
 count  count +1
 End the while loop.
5. Write “product of num is”, P.
6. Stop

Algorithm and flow chart for finding the largest of 3 numbers

1. Start.

2. Read three numbers s A, B and C.

3. Find A is greater than B and C, if so print

the variable A.

4. If B is greater than A, find B is greater

than C, if so print the variable B.

 Else print the variable C.

5. Stop

11

Algorithm and flow chart for finding whether the given number is odd or even.

ALGORITHM FLOW CHART

1. Start

2. Read the number N.

3. Find the remainder(R) of N divided by 2

using the modulus operator(N%2)

4. If the remainder is zero.

 Print “The number is Even Number”.

 Else

 Print “The number is odd number”.

5, Stop.

1.2 INTRODUCTION TO C

•

 1.2.1 HISTORY OF C

C is a general purpose computer programming language and was developed at AT&Ts bell laboratory

of USA in 1972. It was originally created by Dennis Ritchie. By 1960, different computer languages

were used for different purposes. So, an International Committee was set up to develop a language

that is suitable for all purposes. This language is called ALGOL 60.

To overcome the limitation of ALGOL 60, a new language called Combined Programming Language

(CPL) was developed at Cambridge University. CPL has so many features. But it was difficult to learn

and implement. Martin Richards of Cambridge University developed a language called “Basic

Combined Programming Language” (BCPL). BCPL solves the problem of CPL. But it is less powerful.

At the same time, Ken Thomson at AT&T’s Bell laboratory developed a language called ‘B’. Like BCPL,

B is also very specific. Ritchie eliminated the limitations of B and BCPL and developed ‘C’.

1960 ALGOL International Group 1972 Traditional C Dennis Ritchie

1964 CPL Cambridge University 1978 K&R C Kernighan &
Ritchie

1967 BCPL Martin Richards 1989 ANSI C ANSI Committee

1970 B Ken Thompson 1990 ANSI/ISO C ISO Committee

1.

 1.2.2 FEATURES OF C LANGUAGE

• C has all the advantages of assembly language and all the significant features of modern high-

level language. So it is called a “Middle Level Language”.

• C language is a very powerful and flexible language.

• C language supports a number of data types and consists of rich set of operators.

• C language provides dynamic storage allocation.

• C Compiler produces very fast object code.

• C language is a portable language. A code written in C on a particular machine can be compiled

and run on another machine.

12

1.

 1.2.3 STRUCTURE OF A C PROGRAM

Any C Program consists of one or more function. A function is a collection of statements, used

together to perform a particular task. An overview of the structure of a C program is given below: A C

program may contain one or more sections. They are illustrated below.

Documentation Section: The documentation section consists of a set of comment lines giving the

name of the program, the author and other details. It consist of a set of comment lines . These lines

are not executable. Comments are very helpful in identifying the program features

Preprocessor Section: It is used to link system library

files, for defining the macros and for defining the

conditional inclusion.

Definition section : The definition section defines all

symbolic constants.

Global Declaration Section: There are some variables

that are used in more than one function. Such variables

are called global variables and are declared in the global

declaration section that is outside of all the functions.

This section also declares all the user-defined functions.

main () function section : Every C program must have one

main function section. This section contains two parts;

declaration part and executable part.

a) Declaration part : The declaration part declares all

the variables used in the executable part.

b) Executable part : There is at least one statement in

the executable part.

These two parts must appear between the opening and

closing braces. The program execution begins at the

opening brace and ends at the closing brace.

 Fig No 1.5 Structure of C Program

Subprogram section : The subprogram section contains all the user-defined functions that are called

in the main () function. User-defined functions are generally placed immediately after the main ()

function, although they may appear in any order.

SAMPLE C PROGRAM

#include <stdio.h>

int main () { int number, remainder;

printf ("Enter your number to be tested: ");

scanf ("%d", &number);

remainder = number % 7;

if (remainder == 0)

printf ("The number is divided by 7.\n");

else

printf ("The number is not divided by 7.\n"); }

13

General rule for C Programming:

1. Every executable statement must end with semicolon symbol (;) .

2. Every C Program, must contain exactly one main method (starting point of the program execution)

3. All the system defined words (keywords) must be used in lowercase letters.

4. Keywords cannot be used as user defined names.

5. For every open brace ({), there must be respective closing brace(}).

1.

 1.2.4 EXECUTING A “C” PROGRAM

C program executes in following four steps.: 1. Creating the program 2. Compiling the Program

3. Linking the Program with system library 4. Executing the program

1. Creating a program: Type the program and edit it in standard ‘C’ editor and save the program

with .c as an extension. This is the source program .The file should be saved as '*.c' extension

only.

2. Compiling (Alt + F9) the Program:

• This is the process of converting the high level language program to Machine level
Language (Equivalent machine instruction) .

• Errors will be reported if there is any, after the compilation

• Otherwise the program will be converted into an object file (.obj file) as a result of the
compilation

• After error correction the program has to be compiled again

3. Linking a program to library: The object code of a program is linked with libraries that are

needed for execution of a program. The linker is used to link the program with libraries. It

creates a file with '*.exe' extension.

4. Execution of program: This is the process of running (Ctrl + F9) and testing the program with
sample data. If there are any run time errors, then they will be reported.

http://4.bp.blogspot.com/-_Ls59acw8y4/TfYrrRfqggI/AAAAAAAAAFg/8xdWgZB3_-8/s1600/blog.JPG

14

1.3 VARIABLES , CONSTANTS AND DATA TYPES

1.

 1.3.1. C CHARCTER SET

Every C program contains statements. These statements are constructed using words and these words

are constructed using characters from C character set. C language character set contains the following

set of characters...

1. Alphabets 2. Digits 3.Special Symbols

Alphabets: C language supports all the alphabets from english language. Lower and upper case letters

together supports 52 alphabets.

lower case letters - a to z UPPER CASE LETTERS - A to Z

Digits : C language supports 10 digits which are used to construct numerical values in C language.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols : C language supports rich set of special symbols that include symbols to perform

mathematical operations, to check conditions, white spaces, back spaces and other special symbols.

White Space Characters:

The compiler ignores white spaces unless they are a part of a string constant. White spaces may be

used to separate words in strings. scanf() uses whitespace to separate consecutive input items from

each other.

1. Blank Space 2. Horizontal Tab 3. Carriage Return 4. New Line 5. Form Feed

, .Comma & .Ampersand

. .Period ^ .Caret

; .Semicolon * .Asterisk

: .Colon - .Minus Sign

? .Question Mark + .Plus Sign

' .Aphostrophe < .Opening Angle (Less than sign)

" .Quotation Marks > .Closing Angle (Greater than sign)

! .Exclamation Mark (.Left Parenthesis

| .Vertical Bar) .Right Parenthesis

/ .Slash [.Left Bracket

\ .Backslash] .Right Bracket

~ .Tilde { .Left Brace

- .Underscore } .Right Bracket

$.Dollar Sign # .Number Sign

%
.Percentage Sign . .

15

1.

 1.3.2. C TOKENS

C tokens are the basic buildings blocks in C. Smallest individual units in a C program are the C tokens.

C tokens are of six types. The figure 1.7 shows the C tokens.

 20 sum float + - { } “ABC”

Fig No 1.7 C Tokens

•

 1.3.3. KEYWORDS

The meaning of these words has already been explained to the C compiler. All the keywords have

fixed meanings. These meanings cannot be changed. So these words cannot be used for other

purposes. All keywords are in lower case. The keywords are known as Reserved words. Keywords or

Reserved words are Pre-defined identifiers. 32 keywords are available in C.

Properties of Keywords

1. All the keywords in C programming language are defined in lowercase letters only.

2. Every keyword has a specific meaning; users can not change that meaning.

3. Keywords cannot be used as user defined names like variable, functions, arrays, pointers etc...

4. Every keyword in C programming language represents some kind of action to be performed by

the compiler.

1.

 1.3.4. IDENTIFIERS

The names of variables, functions, labels and various other user-defined objects are called Identifiers.

Identifiers are used for defining variable names, function names etc. The general rules to be followed

when constructing an identifier are:

1) Identifiers are a sequence of characters. The only characters allowed are alphabetic characters,

digits and the underscore character. Special characters are not allowed in identifier name.

2) The first character of an identifier is a letter or an underscore character.

3) Identifiers are case sensitive. For example, the identifiers TOTAL and Total are different.

4) Keywords are not allowed as identifier name.

C KEYWORDS

auto break case char const continue default

do double else enum extern float for

goto if int long register return short

signed sizeof static struct switch typedef union

unsigned void volatile while

16

VALID IDENTIFIERS:

Name area interest circum amount rate_of_interest sum

INVALID IDENTIFIERS

Identifers Reason

4th The first letter is a numeric digit.

int The Keyword should not be a identifier

First name Blank space is not allowed.

1.

 1.3.5. CONSTANTS

The data values are usually called as Constant. Constant is a quantity that does not change during

program execution. This quantity can be stored at a location in the memory of the computer. C has

four types of constants: Integer, Floating, String and Character.

INTEGER CONSTANT

An Integer Constant is an integer number. An integer constant is a sequence of digits. There are 3 types

of integers namely decimal integer, octal integer and hexadecimal integer.

Decimal Integer consists of a set of digits 0 to 9 preceded by an optional + or - sign. Spaces, commas

and non digit characters are not permitted between digits.

Example for valid decimal integer constants are : 123 -31 0 562321 + 78

Octal Integer constant consists of any combination of digits from 0 through 7 with a O at the beginning.

Examples of octal integers are : O26 O O347 O676

Hexadecimal integer constant is preceded by OX or Ox. They may contain alphabets from A to F or a

to f. or a decimal digit (0 to 9). The alphabets A to F refers to 10 to 15 in decimal digits.

Example of valid hexadecimal integers are : OX2 OX8C OXbcd Ox123

REAL CONSTANT

Real constants are numbers with fractional part. Real constants are often called as Floating Point

constants.

RULES

1. A real constant must have atleast one digit.

2. It must have a decimal point.

3. It could be either positive or negative.

4. Default sign is positive (If no sign)

5. Special characters are not allowed.

6. Omitting of digit before the decimal point, or digits after the decimal point is allowed. (Ex

.655,12.)

Examples : +325.34 426.0 -32.76 -48.5792

Real Constants are represented in two forms:

i) Fractional form

ii) Exponential form

http://www.exforsys.com/

17

EXPONENTIAL FORM or SCIENTIFIC FORM

The Exponential form is used to represent very large and very small numbers. The exponential form

representation has two parts: 1) mantissa and 2) exponent. The part appears before the letter

‘e’ is called mantissa and the part following the letter ‘e’ is called exponent, which represents a power

of ten. The general form of exponential representation is.

mantissa e exponent

where “mantissa” is a decimal or integer quantity and the “exponent” is an integer quantity with an

optional plus or minus sign.

The general rules regarding exponential forms are

1. The two parts should be separated by a letter “e” or “E”.

2. The mantissa and exponent part may have a positive or a negative sign.

3. Default sign of mantissa and exponent part is positive.

4. The exponent must have at least one digit.

Examples

The value 123.4 may be written as 1.234E+2 or 12.34E+1.

The value 0.01234 may be written as 1.234E-2 or 12.34E-3.

Differences between floating point numbers and integer numbers.

• Integer includes only whole numbers, but floating point numbers can be either whole or fractional.

• Integers are always exact, whereas floating point numbers sometimes can lead to loss of
mathematical precision.

• Floating point operations are slower in execution and often occupy more memory than integer
operations.

CHARACTER CONSTANTS

A character constant is either a single alphabet, a single digit or a single special character enclosed

within a pair of single inverted commas.

The maximum length of a character constant can be 1 character

Examples: ‘A’ ‘1’ ‘$’ ‘ ‘ ‘;’

Each character constant has an integer value. This value is known as ASCII value. For example, the

statement printf (“”%d””,’A’) would print the value of 65. Because the ASCII value of A is 65.

Similarly the statement printf (“%c”,65) would display the letter ‘A’.

STRING CONSTANTS

A combination of characters enclosed within a pair of double inverted commas is called as “String

Constant”.

Examples: “Salem” “35.567” “$125” “Rose”

Each string constant ends with a special character ‘\0’. This character is not visible when the string is

displayed. Thus “salem” contains actually 6 characters. The ‘\0’ character acts as a string terminator.

This character is used to find the end of a string.

18

Remember that a character constant (e.g., ‘A’) and the corresponding single-character string constant

("A") are not equivalent.

A character constant has an equivalent integer value, whereas a single-character string constant

does not have an equivalent integer value and, in fact, consists of two characters - the specified

character followed by the null character (\ 0).

1.

 1.3.6. VARIABLES – DEFINITION AND RULES

A quantity, which may vary during program execution, is called variable. Variables may be used to

store a data value. Variables are actually memory locations , used to store constants. The variables

are identified by names. The program may modify the values stored in a variable.

Rules for constructing variable names

1. A variable name is the combination of characters. The length of a variable depends upon the

complier.

2. The first character must be an alphabet or underscore.

3. Special characters like comma or blank are not allowed except an underscore character. The only

characters allowed are letters, digits and underscore.

4. The variable name should not be a keyword.

Examples : area interest circumference fact date_of_birth

1.

 1.3.7. DECLARING VARIABLES

In C, all the variables used in a program are to be declared before they can be used. All variables must

be declared in the beginning of the function. Type declaration statement is used to declare the type

of various variables used in the program. The syntax for declaration is,

data_type variable_name(s)

where data-type is a valid data type plus any other modifiers. variable-name(s) may contain one or

more variable names separated by commas.

Examples : int a, b, c; long int interest; unsigned char ch;

Declaration statement is used to allocate memory space for the variable. Declaration statement also

provides a name for the location. Declaration statement declares that the program will use that

variable name to identify the value stored at the location.

For example, the declaration

 char sub-name

allocates a memory location of size one byte, of character type. This memory location is given a name

of sub-name.

1.

 1.3.8. INITIALIZATION OF A VARIABLE (ASSIGNING VAUSES TO VARIABLES

The process of assigning initial values to variables is called initialization of variables. In C, an

uninitialised variable can contain any garbage value. Therefore, the programmer must make sure all

the variables are initialised before using them in any of the expressions. The value for a particular

variable is initialized through declarative statement or assignment statement. For example to initialize

the value 10 to an integer variable i, the following two methods are used.

19

i) int i = 10;

ii) int i;
 i = 10;

The above two methods declares that i is an integer variable with an initial value of 10.

Examples : (i) float pi = 3.14; (ii) char alpha = ‘’h’’; (iii) int account = 10;

More than one variable can be initialized in a single statement. For example, the statement

int x = 1, y = 2, z;

declares x to be an int with value 1, y to be an int with value 2 and z to be an int of unpredictable

value. Same value can be initialized to several variables with the single assignment statement.

Examples

int i, j, k, l, m, n;
float a, b, c, d, e, f;
i = j = k = l = m = n = 20;
a = b = c= d = e = f = 13.56;

2.

 1.3.9. DECLARING VARIABLES AS CONSTANTS

A constant is a quantity whose value does not change during program execution. The qualifier const

is used to declare the variable as constant at the time of initialization. The general form to declare

variables as constant is

const data type variable = value;

where const - keyword data type - valid type such as int, float etc.

Example : const float PI = 3.14;

const is a new data type qualifier. This tells the computer that the value of the float variable PI must

not be modified by the program. But , it can be used on the right-hand side of an assignment like any

other variable.

1.

 1.3.10. DECLARING VARIABLES AS VOLATILE

The qualifier volatile is used to tell explicitly the compiler that a variable’s value may be changed at

any time by some external sources not by the program(from outside the program). General form to

declare a variable as volatile is

volatile data type variable;

where volatile -keyword data type - valid types such as int, float etc.

Example : volatile int x;

The value of x may be altered by some external factors even if it does not appear on the left-hand side

of an assignment statement. When declaring a variable as volatile, the compiler will examine the value

of the variable each time it is encountered to see whether any external alteration has changed the

value.

20

1.

 1.3.11. DATA TYPES

C supports several data types. Each data type may be represented differently inside the computer’s
memory. There are four data types in C language. They are,

Types Data Types

Basic data types int, char, float, double

Enumeration data type enum

Derived data type pointer, array, structure, union

Void data type void

Basic Data Types

Basic or Fundamental data types include the data types at the lowest level. i.e. those which are used

for actual data representation in the memory. All other data types are based on the fundamental

data types.

Examples: char, int, float, double.

int type is used to store positive or negative integers. float data type is used to store a single precision

floating-point (real) number. Floating-point numbers are stored in 32 bits with 6 digits of precision.

double data type is used to hold real numbers with higher storage range and accuracy than the type

float. The data type char is used to store one character.

The size (number of bytes) and range of numbers to be stored in each data type is shown below.

Data Type Size (Bytes) Range

char 1 -128 to 127

int 2 -32,768 to 32, 767

float 4 3.4 E-38 to 3.4 E+38

double 8 1.7 E-308 to 3.4 E+308

Derived Data Types

These are based on fundamental data types. i.e. a derived data type is represented in the memory as

a fundamental data type.

Examples: pointers, structures, arrays.

Void data type :
1. void is an empty data type that has no value.
2. This can be used in functions and pointers.

3.

 1.3.12. DATA TYPES MODIFIERS(QUALIFIERS)

The basic data type may be modified by adding special keywords. These special keywords are called

data type modifiers (or) qualifiers. Data type modifiers are used to produce new data types.

The modifiers are: signed unsigned long short

The above modifiers can be applied to integer and char types. Long can also be applied to double

type.

21

Integer Type

A signed integer constant is in the range of -32768 to +32767. Integer constant is always stored in two

bytes. In two bytes, it is impossible to store a number bigger than +32767 and smaller than -

32768. Out of the two bytes used to store an integer, the leftmost bit is used to store the sign of the

integer. So the remaining 15 bits are used to store a number. If the leftmost bit is 1, then the number

is negative. If the leftmost bit is 0, then the number is positive.

C has three classes of integer storage namely short int, int and long int. All of these data types have

signed and unsigned forms. A short int requires half the space than normal size. Unsigned numbers

are always positive and consume all the bits for storing the magnitude of the number. The long and

unsigned integers are used to declare a longer range of values.

Floating Point Type

Floating point number represents a real number with 6 digits precision. When the accuracy of the

floating point number is insufficient, use the double to define the number. The double is same as float

but with longer precision. To extend the precision further , use long double, which consumes 80 bits

of memory space.

Character Type

Characters are usually stored in 8 bits of internal storage. The qualifier signed or unsigned can be

explicitly applied to char. While unsigned characters have values between 0 and 255, signed characters

have values from –-128 to 127.

Size and Range of Data Types on 16 bit machine.

TYPE SIZE (Bits) Range

Char or Signed Char 8 -128 to 127

Unsigned Char 8 0 to 255

Int or Signed int 16 -32768 to 32767

Unsigned int 16 0 to 65535

Short int or Signed short int 8 -128 to 127

Unsigned short int 8 0 to 255

Long int or signed long int 32 -2147483648 to 2147483647

Unsigned long int 32 0 to 4294967295

Float 32 3.4 e-38 to 3.4 e+38

Double 64 1.7e-308 to 1.7e+308

Long Double 80 3.4 e-4932 to 3.4 e+4932
1.

 1.3.13. OVERFLOW AND UNDERFLOW OF DATA

Assigning a value which more than the upper limit of the data type is called overflow and less
than its lower limit is called underflow.

In case of integer types, overflow results wrapping towards negative side and underflow
results wrapping towards positive side.

In case of floating point types, overflow results +INF and underflow results –INF.

Example 1 :

#include <stdio.h>
void main()

22

{

int a = 32770;
printf(“%d””,a);
}

Output : - 32766

The range of integer is – -32768 to + 32767, assigning 32770 results overflow and wrap
towards –negative side.

Example 2:

#include <stdio.h>
void main()

{
int a = 33000;
float b = 3.4e50;
printf(“%d%f””,a,b);
}

Output : - 32536 +INF

The range of integer is – -32768 to + 32767, assigning 33000 results overflow and wrap
towards –negative side and +INF is a result of float overflow.

1.

 1.3.14. COMMENTS

Comments are used to make a program more readable. Comments are not instructions. Comments

are remarks written in a program. These remarks are used to give more information about the

program. The compiler will ignore the comment statements.

In C, there are two types of comments.

1. Single Line Comments: Single line comment begins with // symbol. Any number of single line

comments can be written.

2. Multiple Lines Comments: Multiple lines comment begins with /* symbol and ends with */.

Any number of multiple lines comments can be included in a program.

In a C program, the comment lines are optional. All the comment lines in a C program just provide

the guidelines to understand the program and its code.

Examples:

(e.g.) /* Program to find the Factorial */

Any number of comments can be placed at any place in a program. Comments cannot be nested. For

example

/* Author Arul /* date 01/09/93 */ */ is not possible.

A comment can be split over more than one line. For example, the following is valid.

/* This statement is used to find the sum of two

 numbers */

23

1.

 1.3.15. ESCAPE SEQUENCES

Character combinations consisting of a backslash (\) followed by a letter or by a combination of digits

are called "escape sequences." To represent a newline character, single quotation mark, or certain

other characters in a character constant, escape sequences are used. An escape sequence is regarded

as a single character and is therefore valid as a character constant.

• The escape sequence characters are also called as backslash character constants.

• These are used for formatting the output

For example, a line feed (LF), which is referred to as a newline in C, can be represented as \n. Such

escape sequences always represent single characters, even though they are written in terms of two

or more characters. The commonly used escape sequences are listed below.

ESCAPE CHARACTER MEANING ESCAPE CHARACTER MEANING

bell (alert) \a carriage return \r

backspace \b quotation mark (") *

horizontal tab \t apostrophe (') \’

vertical tab \v question mark (?) \?

newline (line feed) \n backslash \\

form feed \f null \0

The following program outputs a new line and a tab and then prints the string This is a test.

#include <stdio.h>

int main()

{

printf(''\n\tThis is a test.");

return 0;

}

Characteristics

• Although it consists of two characters, it represents single character.

• Every combination starts with back slash(\)

• They are non-printing characters.

• It can also be expressed in terms of octal digits or hexadecimal sequence.

• Each escape sequence has unique ASCII value.

1.

 1.3.16. SYMBOLIC CONSTANTS

• Names given to values that cannot be changed. Implemented with the #define preprocessor

 directive.

#define N 3000

#define FALSE 0

• Preprocessor statements begin with a # symbol, and are NOT terminated by a semicolon.

Traditionally, preprocessor statements are listed at the beginning of the source file.

24

• Preprocessor statements are handled by the compiler (or preprocessor) before the program is

actually compiled. All # statements are processed first, and the symbols (like N) which occur in

the C program are replaced by their value (like 3000). Once this substitution has taken place by

the preprocessor, the program is then compiled.

• In general, preprocessor constants are written in UPPERCASE. This acts as a form of internal

documentation to enhance program readability and reuse.

• In the program itself, values cannot be assigned to symbolic constants.

Use of Symbolic Constants

• Consider the following program which defines a constant called TAXRATE.

#include <stdio.h>

#define TAXRATE 0.10

main () {

float balance;

float tax;

balance = 72.10;

tax = balance * TAXRATE;

printf("The tax on %.2f is %.2f\n",balance, tax);}

1.4. C OPERATORS

1.

 1.4.1. INTRODUCTIONS TO OPERATORS

C has a very rich set of operators. So C language is some times called “the language of operators”.

Operators are used to manipulate data and variables. An operator is a symbol, which represents some

particular operation that can be performed on some data. The data itself (which can be either a

variable or a constant) is called the 'operand'.

Operators operate on constants or variables, which are called operands. Operators can be generally

classified as either unary, binary or ternary operators. Unary operators act on one operand, binary

operators act on two operands and ternary operators operate on three operands.

Depending on the function performed, the operators can be classified as

Arithmetic Relational Logical Conditional Assignment

Increment & Decrement Modulo division Bitwise Special operators

1.

 1.4.2. ARITHMETIC OPERATORS

Arithmetic operators are used to perform arithmetic operation in C. Arithmetic operators are divided

into two classes: (i) Unary arithmetic operators and (ii) Binary arithmetic operators

Binary operators

Operator Meaning

+ Addition or Unary Plus

 -– Subtraction or Unary Minus

* Multiplication

/ Division

% Modulus Operator

25

Arithmetic Operators +, -, * and / can be applied to almost any built-in data types. Suppose that a and

b are integer variables whose values are 10 and 3, respectively. Several arithmetic expressions

involving these variables are shown below, together with their resulting values.

Operation Value

a+ b 13

a–b 7

a* b 30

a/ b 3

a%b 1

Modulo operator: The modulo operator (%) gives the remainder of the division between the two

integer values. For Modulo division, the sign of result is always that of the first operand or dividend.

For example, 13%-5 = 3; -13 % - 5 = -3; -13% 5 = -3;

 13% 5 = 3;

Example :

main()

{

int a, b,c,d;

a = 10;

b = 4;

c= a/b;

d = a % b;

printf(“”%d %d””, c, d);

}

Modulo division operator cannot be used with floating point type. C does not have no option for

exponentiation.

Unary minus operator

In unary minus operation, minus sign precedes a numerical constant, variable or an expression. A

negative number is actually an expression, consisting of the unary minus operator, followed by a

positive numeric constant. Unary minus operation is entirely different from the subtraction operator

(-). The subtraction operator requires two operands.

1.

 1.4.3. INCREMENT AND DECREMENT OPERATORS

C contains two special operators ++ and --. ++ is called Increment operator. -- is called Decrement

operator; The above two operators are called unary operators since they operate on only one

operand. The operand has to be a variable and not a constant. Thus, the expression 'a++' is valid

whereas '6++' is invalid.

Increment operators are used to increase the value of the variable by one and decrement operators

are used to decrease the value of the variable by one in C programs.

• Syntax:

Increment operator: ++var_name; (or) var_name++;

 Decrement operator: – --var_name; (or) var_name –--;

26

• Example:

 Increment operator : ++ i ; i ++ ;

 Decrement operator : --i ; i-- ;

If the operator is used before the operand, then it is called prefix operator. (Example: ++a, --a). If the

operator is used after the operand, then it is called postfix operator. (Example: a++, a--).

Difference between pre/post increment & decrement operators in C:

Below table will explain the difference between pre/post increment and decrement operators .

Operator Operator/Description

Pre increment operator (++i)
value of i is incremented before assigning it to the variable i

Post increment operator (i++)
value of i is incremented after assigning it to the variable i

Pre decrement operator (–i)
value of i is decremented before assigning it to the variable i

Post decrement operator (i–)
value of i is decremented after assigning it to variable i

Prefix and Postfix operators have the same effect if they are used in an isolated C statement. For

example, the two statements

x++; and ++x; have the same effect

But prefix and postfix operators have different effects when they are assigned to some other variable.

For example the statements

z = ++x; and z = x++; have different effects.

Assume the value of x to be 10. The execution of the statement z= ++x; will first increment the

value of x to 11 and assign new value to z. The above statement is equal to the following two

statements.

x = x + 1 ;

z = x ;

The execution of the statement z = x++; will first assign the value of z to 10 and then increase the

value of x to 11. The above statement is equal to

z = x ;
x = x + 1 ;

The decrement operators are also in a similar way, except the values of x and z which are decreased

by 1.

Other Examples

a = 10 , b=6 a=10, b = 6

c = a * b++ c = a * ++b

Output:

c = 60; c = 70

The expression n++ requires a single machine instruction such as INR to carry out the increment

operation. But n+1 operation requires more instructions to carry out this operation. So the

execution of n++ is faster than n+ 1 operation.

27

1.

 1.4.4. RELATIONAL OPERATORS

Relational operators are used to test the relationship between two operands. The operands can be

variables, constants or expressions. C has six relational operators. They are

Operator Meaning Operator Meaning

< is less than >= is greater than or equal to

<= is less than or equal to == is equal to

> is greater than != is not equal to

An expression containing a relational operator is called as a relational expression. The value of the

relational expression is either true or false. If it is false, the value of the expression is 0 and if it is true,

the value is 1.

Examples :

Suppose that i,j and k are integer variables whose values are 1, 2 and 3, respectively. Several relational

expressions involving these variables are shown below.

Expression Interpretation Value

i < j true 1

(1 + j) >= k true 1

(j + k) > (i + 5) false 0

k != 3 false 0

j == 2 true 1

1.

 1.4.5. LOGICAL OPERATORS

Logical operators are used to combine or negate expression containing relational expressions. C

provides three logical operators.

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

Logical expression is the combination of two or more relational expressions. Logical operators are used

to combine the result of evaluation of relational expressions. Like the simple relational expression, a

logical expression also gives value of one or zero.

LOGICAL AND (&&)

This operator is used to evaluate two conditions or expressions simultaneously. If both the expressions

to the left and to the right of the logical operator is true then the whole compound expression is true.

Example : a > b && x = = 10

The expression to the left is a > b and that on the right is x == 10.The whole expression is true only if
both expressions are true i.e., if a is greater than b and x is equal to 10.

LOGICAL OR (||)

The logical OR is used to combine two expressions or the condition. If any one of the expression is

true, then the whole compound expression is true.

28

Example : a < m || a < n

The expression evaluates to true if any one of them is true or if both of them are true. It evaluates to

true if a is less than either m or n and when a is less than both m and n.

LOGICAL NOT (!)

The logical not operator takes single expression and evaluates to true if the expression is false and

evaluates to false if the expression is true. In other words, it just reverses the value of the expression.

Examples

Suppose that i is an integer variable whose value is 7, f is a floating-point variable whose value is 5.5,

and c is a character variable that represents the character ’w ‘. Several complex logical expressions

that make use of these variables are shown below.

Expression Interpretation Value

(i >= 6) && (c == ' w’) true 1

(i >= 6) || (c == 119) true 1

(f < 11) && (i > 100) false 0

(c != ' p ')|| ((i + f) <= 10) true 1
The truth table for the logical operators is shown here using 1's and 0's.

p q p && q p || q !p

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

 1.4.6. CONDITIONAL OPERATORS

Simple conditional operations can be carried out with the conditional operator (?:). The conditional
operator is used to build a sionditional expression. The Conditional operator has two parts: ? and :

An expression that uses the conditional operator is called conditional expression. The conditional

operator is a ternary operator because it operates on three operands. The general form is

expression1 ? expression 2 : expression 3 ;

The expression1 is evaluated first. If it is true (non – zero), then the expression 2 is evaluated and its

value is returned. If expression 1 is false (zero), then expression 3 is evaluated and its value is returned.

Only one expression either expression 2 or expression 3 will be evaluated at a time.

Conditional expression frequently appear on the righthand side of a simple assignment statement.
The resulting value of the conditional expression is assigned to the identifier on the left.

Example : max = c >d ? c : d;

The purpose of the above statement is to assign the value of c or d to max, whichever is larger. First

the condition (c > d) is tested. If it is true, max = c; if it is false max = d;

 1.4.7. ASSIGNMENT AND SHORT-HAND ASSIGNMENT OPERATORS

The Assignment Operator (=) evaluates an expression on the right hand side of the expression and

substitutes this value to the variable on the left hand side of the expression.

Example : x = a + b ;

29

Here the value of a + b is evaluated and substituted to the variable x.

In addition, C has a set of shorthand assignment operators. Short hand assignment operators are used

to simplify the coding of a certain type of assignment statement. The general form of this statement

is

var oper = exp;

Here var is a variable, exp is an expression or constant or variable and oper is a C binary arithmetic

operator. The operator oper = is known as shorthand assignment operator

The above general form translates to : var = var op exp;

The compound assignment statement is useful when the variable name is longer. For example

 amount-of-interest = amount-of-interest * 10 ;

can be written as

 amount-of-interest * = 10 ;

For example a = a + 1; can be written as a + = 1

The short hand works for all binary operators in C. Examples are

x - = y; is equal to x = x - y;

x * = y; is equal to x = x * y;

x / = y; is equal to x = x / y;

x %= y; is equal to x = x % y;

4.

 1.4.8. BITWISE OPERATORS

The combination of 8 bits is called as one byte. A bit stores either a 0 or 1. Data are stored in the

memory and in the registers as a sequence of bits with 0 or 1.

Bitwise operators are used for manipulation of data at bit level. The operators that are used to perform

bit manipulations are called bit operators. C supports the following six bit operators.

Operator Description Operator Description

& Bitwise AND ~ One’s Complement

| Bitwise OR << Shift left

^ Bitwise X-OR >> Shift right

These operators can operate only on integers and not on float or double data types. All operators

except ~ operator are binary operators, requiring two operands. When using the bit operators, each

operand is treated as a binary number consisting of a series of individual 1s and 0s. The respective

bits in each operand are then compared on a bit by bit basis and result is determined based on the

selected operation.

Bitwise AND operator

Bitwise AND operator(&) is used to mask off certain bits. The result of ANDing operation is 1 if both

the bits have a value of 1; otherwise it is 0. Assume the two variables a and b, whose values are 12

and 24. The result of the statement c = a & b is

a 0 0 0 0 1 1 0 0

b 0 0 0 1 1 0 0 0

c=a&b 0 0 0 0 1 0 0 0

30

The value of c is 8. To mask the particular bit (s) in a value, AND the above value with another value

by placing 0 in the corresponding bit in the second value.

Bitwise OR operator Bitwise OR operator(|) is used to turn ON certain bits. The result of ORing

operation is 1 if any one of the e bits have a value of 1; otherwise it is 0. Assume the two variables a

and b, whose values are 12 and 24. The result of the statement c = a | b is

a 0 0 0 0 1 1 0 0

b 0 0 0 1 1 0 0 0

c=a|b 0 0 0 1 1 1 0 0

The value of c is 28. To turn ON a particular bit(s) in a pattern of bits, OR the above value with

another value by placing 1 in the corresponding bit in the second value.

Bitwise Exclusive OR operator

The result of bitwise Exclusive OR operator (^) is 1 if only one of the bits is 1; otherwise it is 0. The

result of a ^ b is

A 0 0 0 0 1 1 0 0

b 0 0 0 1 1 0 0 0

c= a^b 0 0 0 1 0 1 0 0

The value of c is 20.

Bitwise Complement operator

The complement operator ~ complements all the bits in an operand. That is, 0 changes to 1 and 1

changes to 0. If the value of a is 00001100, then ~a is 11110011.

Shift operators

The shift operators are used to move bit pattern either to the left or right. The general forms of shift

operators are

Left shift : operand << n Right shift : operand >> n

where operand is an integer and n is the number of bit positions to be shifted. The value for n must

be an integer quantity.

Assume the value of a is 12. Then the result of a << 2 will be follows:

a 0 0 0 0 1 1 0 0

a<<2 0 0 1 1 0 0 0 0

The value of c is 48. The above operation shifts the bits to the left by two places and the vacated

places on the right side will be filled with zeros. Every shift to the left by one position corresponds

to multiplication by 2. Shifting two positions is equal to multiplication by 2*2 i.e, by 4. Similarly, every

shift to the right by one position corresponds to division by 2.

 1.4.9. SPECIAL OPERATORS

C supports some special operators like comma operator, sizeof operator, pointer operators (& and *)
and member selection operators (. And ->).

31

Comma Operator:

Comma operator is used in the assignment statement to assign many values to many variables.

Example: int a=10, b= 20, c- 30;

Comma operator is also used in for loop in all the three fields.

Example: for (i=0, j=2; i<10; i=i+1;j=j+2);

Sizeof Operator:

Another unary operator is the sizeof operator . This operator returns the size of its operand, in bytes.
This operator always precedes its operand. The operand may be a variable, a constant or a data type
qualifier. Consider the following program.

main(){

int sum;

printf("%d", sizeof(float));

printf("%d", sizeof (sum));

printf("%d", sizeof (234L));

printf("%d", sizeof ('A')); }

Here the first printf() would print out 4 since a float is always 4 bytes long. With this reasoning, the

next three printf() statements would output 2, 4 and 2. Consider an array school[]= “National” .

Then, sizeof (school) statement will give the result as 8.

1.

 1.4.10. HIERARCHY OF OPERATIONS (PRECEDENCE AND ACCOCIATIVITY)

The order in which the operations are performed in an expression is called hierarchy of operations.

The priority or precedence of operators is given below.

The arithmetic operators have the highest priority. Both relational and logical operators are lower in

precedence than the arithmetic operators (except !). The shorthand assignment operators have the

lowest priority.

Order Category Operator Operation Associativity

1 Highest

precedence

()
[]
→
: :
.

Function call L → R
Left to Right

2 Unary !
~
+
-

++
- -
&
*

Size of

Logical negation (NOT)
Bitwise 1’s omplement
Unary plus
Unary minus
Pre or post increment
Pre or post decrement
Address
Indirection
Size of operant in bytes

R → L
Right -> Left

3 Multiplication *
/
%

Multiply
Divide
Modulus

L → R

4 Additive +
-

Binary Plus
Binary Minus

L → R

32

5 Shift <<
>>

Left shift
Right shift

L → R

6 Relational <
<=
>

>=

Less than
Less than or equal to
Greater than
Greater than or equal
to

L → R

7 Equality ==
!=

Equal to
Not Equal to

L → R

8 Bitwise AND & Bitwise AND L → R

9 Bitwise XOR ^ Bitwise XOR L → R

10 Bitwise OR | Bitwise OR L → R

 Logical AND && Logical AND L → R

12 Conditional ? : Ternary Operator R → L

13 Assignment =
*=
%=
/=
+=
-=
&=
^=
|=

<<=
>>=

Assignment
Assign product
Assign reminder
Assign quotient
Assign sum
Assign difference
Assign bitwise AND
Assign bitwise XOR
Assign bitwise OR
Assign left shift
Assign right shift

R → L

14 Comma , Evaluate L → R

An expression within the parentheses is always evaluated first. One set of parentheses can be enclosed

within another. This is called nesting of parentheses. In such cases, innermost parentheses is

evaluated first.

Associatively means how an operator associates with its operands. For example, the unary minus

associated with the quantity to its right, and in division the left operand is divided by right. The

assignment operator ‘=’ associates from right to left. Associativity also refers to the order in which C

evaluates operators in an expression having same precedence. For example, the statement a = b = 20

/ 2 ; assigns the value of 10 to b, which is then assigned to ‘a’, since associativity said to be from right

to left.

1.

 1.4.11. EVALUATION OF EXPRESSIONS

Example 1: Determine the hierarchy of operations and evaluate the following expression:
 i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

Stepwise evaluation of this expression is shown below:

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

i = 6 / 4 + 4 / 4 + 8 - 2 + 5 / 8 operation: *

i = 1 + 4 / 4 + 8 - 2 + 5 / 8 operation: /

i = 1 + 1+ 8 - 2 + 5 / 8 operation: /

i = 1 + 1 + 8 - 2 + 0 operation: /

i = 2 + 8 - 2 + 0 operation: +

33

i = 10 - 2 + 0 operation: +

i = 8 + 0 operation : -

i = 8 operation: +

Note that 6 / 4 gives 1 and not 1.5. This so happens because 6 and 4 both are integers and therefore

would evaluate to only an integer constant. Similarly 5 / 8 evaluates to zero, since 5 and 8 are integer

constants and hence must return an integer value.

Example 2: Determine the hierarchy of operations and evaluate the following expression:
 k = 3 / 2 * 4 + 3 / 8 + 3

k = 3 / 2 * 4 + 3 / 8 + 3

k = 1 * 4 + 3 / 8 + 3 operation: /

k = 4 + 3 / 8 + 3 operation: *

k = 4 + 0 + 3 operation: /

k = 4 + 3 operation: +

k = 7 operation +

1.

 1.4.12. ASSIGNMENT STATEMENTS

Assignment statements are used to assign the values to variables. Assignment statements are

constructed using the assignment operator (=). General form of assigning value to variable is

variable = expression;

where expression is a constant or a variable name or the expression (Combinations of constants,

variables and operators).

Examples : (i) a = 5; (ii) a = b; (iii) a = a + b; (iv) a = a > b;

Rules to be followed when constructing assignment statements

1. Only one variable is allowed on the left hand side of ‘=’ expression a = b * c is valid, whereas

a + b = 5 is invalid.

2. Arithmetic operators can be performed on char, int, float and double data types. For example

the following program is valid, since the addition is performed on the ASCII value of the

characters x and y.

char a,b;

int z;

a = ‘x’;

b = ‘y’

z = a +b;

3. All the operators must be written explicitly. For example D = x. y .z is invalid. It must be

written as D = x * y * z.

Multiple Assignment Statement

The same value can be assigned to more than one variable in a single assignment. This is possible by

using multiple assignments. For example to assign the value 30 to the variable a, b, c, d is

 a = b = c = d = 30;

However, this cannot be done at the time of declaration of variables.

For example

 int a = b = c = d = 30 is invalid.

34

 1.4.1. EXPRESSIONS

An expression is the combination of Variables and Constants connected by any one of the arithmetic

operator. Examples for expressions are:

(i) a + b (ii) b+5 (iii) a+b*5-6/c (iv) 8.2+ a/b+6.7

Integer expression: If all the variables and constants in an expression are of integer type, then this

type of expression is called as integer expression. An integer expression will always give a result in

integer value.

Real Expression: If all variables and constants in an expression are of real type, then this type of

expression is called as real expression, A real expression will always give a result in real value.

Mixed mode Expression: If the elements in an expression are of both real and integer types, then this

type of expression is called as mixed mode expression. A mixed mode expression will always give a

result in real value.

 Examples:

Integer Expression Real Expression Mixed Mode Expresiion

int a,b,c;

c = a+b/5 + c/a;

float a,b,c;

c = a+b/2.0 + c+ 5.6

int a,b;

float c,d;

d = 5 + a/c + c/b + 6.1

1.

 1.4.14. TYPE CONVERSION

Implicit type conversion

C permits mixing of constants and variables of different types in an expression. C automatically

converts any intermediate values to the proper type so that the expression can be evaluated without

loosing any significance. This automatic type conversion is known as implicit type conversion

When constants and variables of different types are mixed in an expression, they are all converted to

the same type. The compiler converts all operands up to the type of the largest operand, which is

called type promotion. The order of various data type is

char < int < long < float < double

For example if an expression contains an operator between int and float, the int would be

automatically promoted to a float before carrying out the operation. The following table shows the

final data type when two operands are of different types.

Opearnd1 Opearnd2 Result

char int Int

char float float

int float float

int char Int

long int float fFloat

float double double

double char double

double long int double

35

Explicit Conversion (Type cast operator)

Consider for example the ratio of number of female and male students in a class is

Ratio =female_students /male_students

Since if female_students and male_students are declared as integers, the decimal part will be rounded

off and its ratio will represent a wrong figure. This problem can be solved by converting locally one of

the variables to the floating point as shown below.
Ratio = (float) female_students / male_students

The operator float converts the female_students to floating point for the purpose of evaluation of the

expression. Then using the rule of automatic conversion, the division is performed by floating point

mode, thus retaining the fractional part of the result.

The process of such a local conversion is known as explicit conversion or casting a value. The general

form is

(type_name) expression

1.5. I/O FUNCTIONS

C has no input and output statement to perform the input and output operations. C language has a

collection of library functions for input and output (I/O) operations. The input and output functions

are used to transfer the information between the computer and the standard input / output devices.

Console I/O functions - functions to receive input from keyboard and write output to VDU.

 1.5.1. FORMATTED AND UNFORMATTED FUNCTIONS

The basic difference between formatted and unformatted I/O functions is that the formatted

functions allow the input read from the keyboard or the output displayed on the VDU to be formatted

as per our requirements. For example, if values of average marks and percentage marks are to be

displayed on the screen, then the details like where this output would appear on the screen, how

many spaces would be present between the two values, the number of places after the decimal points

etc., can be controlled using formatted functions.

Console Input/Output functions

 Formatted functions Unformatted functions

Type Input Output Type Input Output

char scanf() printf() char getch() putch()

 getchar() putchar()

 getche()

int scanf() printf() int - -

float scanf() printf() float - -

string scanf() printf() string gets() puts()

 1.5.2. PRINTF () FUNCTION

printf () function is used to display data on the monitor. The printf () function moves data from the

computer’s memory to the standard output device. The general format of printf () function is

36

printf (“control string”, list of arguments);

Comma is used to separate the control string from variable list.

The control string can contain : -the characters that are to be displayed on the screen.

-format specifiers that begin with a % sign.

-escape sequences that begin with a backward slash (\) sign.
Examples

printf (“”%f, %f, %d, %d””, i, j, k + i, 5);

printf (“Sum of %d and %d is %d””, a, b, a + b);

printf (“”Two numbers are %d and % d””,a,b);

printf () never supplies a newline automatically. Therefore multiple printf () statements may be used

to display one line of output. A new line can be introduced by the new line character \n.

Conversion Characters or Format Specifiers

The character specified after % is called a conversion character. Conversion character is used to

convert one data type to another type.

Conversion Character Meaning

%c Data item is displayed as a single character

%d Data item is displayed as a signed decimal integer

% e Data item is displayed as a floating-point value with an exponent

% f Data item is displayed as a floating-point value without an exponent

%i Data item is displayed as a signed decimal integer

%o Data item is displayed as an octal integer, without a leading zero

%s Data item is displayed as a string

%u Data item is displayed as an unsigned decimal integer

%x Data item is displayed as a hexadecimal integer, without the leading Ox

List of Variable Arguments

The arguments may be constants, single variable or array name or more complex expressions.

1.

 1.5.3. FORMATTED PRINTF FUNCTIONS

Formatted printf function is used for the following purposes:

1. To print values at the particular position of the screen.

2. To insert the spaces between the two values.

3. To give the number of places after the decimal point.

The above things can be achieved by adding modifier to the format specifiers. Modifiers are placed
between the percent sign (%) and the format specifier. A maximum field width, the number of
decimal places, left justification can be specified by using the modifiers.

The number placed between percent sign (%) and the format specifier is called a field width specifier.

For outputting Integer Numbers

The general format of the field width specifier is

%Wd

where W is the minimum field width. If the value to be printed is greater than the specified field

width, the whole value is displayed. If the output is shorter than the length specified, remaining spaces

37

will be filled by blank spaces and the value is right justified. The following example illustrates the

output of the number 1234 under different formats.

Format Output

printf(“”%d””,1234) 1 2 3 4

printf(“”%6d””,1234) 1 2 3 4

printf(“”%2d””,1234) 1 2 3 4

printf(“”%-6d””,1234) 1 2 3 4

printf(“”%4d””,-1234) - 1 2 3 4

printf(“”%06d””,1234) 0 0 1 2 3 4

Commonly used Flags:

 - Data item is left justified within the field

+ A sign (either + or -) will precede each signed numerical data item. Without this
flag, only negative data items are preceded by a sign.

0 Causes leading zeros to appear instead of leading blanks.

Outputting of Real Numbers

The general format for field width specification for outputting real number is

% W.d f

Where W represents the minimum number of width used for displaying the output value and “d”

indicates the number of digits to be displayed after the decimal point. This number is called precision.

The precision is an unsigned number. The given value is rounded to d decimal places and printed

right-justified in the field of W columns. The default precision is 6 decimal places. Real numbers are

also displayed in exponentiation form by using the specification e.

The following example illustrates the output of the number y = 12.3456 under different formats.

printf(“”%8.4f””,y) 1 2 . 3 4 5 6

printf(“”%8.2f””,y) 1 2 . 3 5

printf(“”%-8.2f””,y) 1 2 . 3 5

printf(“%f””,y) 1 2 . 3 4 5 6 0 0

printf(“%8.2e”,y) 1 . 2 3 e + 0 1

Outputting of string data

The general format for field width specification for outputting string data is

% W. d s

where W represents the minimum number of width used for displaying the output value and d
indicates the maximum number of characters that can be displayed. If the precision specification is
less than the total number of characters in the string, the excess rightmost characters will not be
displayed.

38

When using string, for the minimum field width specification, leading blanks will be added if the string

is shorter than the specified field width, Additional space will be allocated if the string is larger than

the specified field width.

Example
main(){

char item[9] = “”computer””;

printf(%5s\n%11s\n%11.5s\n%.5s”,item,item,item,item);}

Output:

c o m P U t e r

 C O m p u t e r

 c o m p u

c o m p U

 1.5.4. SCANF() FUNCTION

scanf() function is used to read the value from the input device. The general format of scanf ()

function is

scanf (“Control string”, list of address of arguments);

The list of address of arguments represents the data items to be read. Each variable name must be

preceded by an ampersand (&). The arguments are actually pointer which indicate where the data

items are stored in the memory. Example of a scanf function is

scanf (“%d %f %c””, &a, &b, &ch);

The control string consists of format specifier, white space character and non-white space character.

The format specifier in scanf are very similar to those used with printf ().

Important points while using scanf are

1. Every basic data type variable must be preceded by (&) sign. In the case of string and array
data type, the data name is not preceded by the character &.

2. Text to be printed is not allowed in scanf statement. For example scanf (“Enter the number
%d”, &a); is not valid.

3. The data items must correspond to the arguments.

4. If two or more data items are entered, they must separated by white space characters. (blank
spaces, tabs or new line characters). Data items may continue into two or more lines. For
example, for the statement

scanf (“”%s %d %f””, name, ®no, &avg);

the data items can be entered in the following methods.

 (i) Arul

12345

85.56

(ii) Arul 12345

 85.56

(iii) Arul

 12345 85.56

(iv) Arul 12345 85.56

Modifier with scanf functions

A modifier is used to specify the maximum field length. The modifier is placed between % sign and

the format specifier.

Example : scanf (“%6s””, str1);

39

is used to read a string of maximum 6 characters. If the input is more than 6 characters, first 6

characters will be assigned.

Length of data items may be lesser than the specified field width. But the number of characters in the actual

data item cannot exceed the specified field width. Any excess character will not be read. Such uncovered

characters may be incorrectly interpreted. This excess character acts as the input for the next data items.

 1.5.5. UNFORMATTED FUNCTIONS

GETCHAR () FUNCTION

getchar() function is used to read one character at a time from the standard input device. When the

getchar() function is called, it waits until a key is pressed and assigns this character as a value to getchar

function. The value is also echoed on the screen.

The getchar() function does not require any argument. But a pair of empty parentheses must follow

the word getchar. In general, the getchar function is written as

variable name = getchar();

where variable name is a valid C identifier that has been declared as char type.

For example,

 char letter ;

 letter = getchar ();

will assign the character ‘A’ to the variable letter when pressing A on the keyboard. getchar ()

accepts all the characters upto the pressing of enter key, but reads the first character only.

PUTCHAR() FUNCTION

Single character can be displayed using the function putchar (). The function putchar () stands for

“put character” and uses a argument. The general form of the putchar() function is

putchar (argument);

The argument may be a character variable or an integer value or the character itself contained within

a single quote.

Examples

void main() {

char x = ‘’A’’;

putchar (x);

putchar (‘’B’’);

}+

gets() function

gets() accepts any line of string including spaces from the standard Input device (keyboard). gets()
stops reading character from keyboard only when the enter key is pressed.

Syntax for gets()

gets(variable_name);

40

puts() function

 puts displays a single / paragraph of text to the standard output device.

Syntax for puts in C :

puts(variable_name);

Sample program :

#include<stdio.h>

#include<conio.h>

void main()

{

char a[20];

gets(a);

puts(a);

getch();

}

1. gets is used to receive user input to the array. gets stops receiving user input only when
the Newline character (Enter Key) is interrupted.

2. puts is used to display them back in the monitor.

 1.3.5. CONSTANTS

 ADDITIONAL PROGRAMS

1. Assume all variables are of type int. Find the value of each of the following variables:

a) x = (int) 3.8 + 3.3; b) x = (2 + 3)* 10.5; c) x = 3 / 5 * 22.0; d) x = 22.0 * 3 / 5;

a) 6 (reduces to 3 + 3.3) b) 52 c) 0 (reduces to 0 * 22.0) d) 13 (reduces to 66.0 / 5)

2. Construct statements that do the following:

a. Decrease the variable x by 1.

b. Assigns to m the remainder of n divided by k.

c. Divide q by b minus a and assign the result to p.

d. Assign to x the result of dividing the sum of a and b by the product of c and d.

 a) x--; or --x; or x = x - 1; b) m = n % k; c) p = q / (b - a); d) x = (a + b) / (c * d);

3. Construct an expression to express the following conditions:

a. number is equal to or greater than 90 but smaller than 100.

b. ch is not a q or a k character.

c. number is between 1 and 9 (including the end values) but is not a 5.

d. number is not between 1 and 9.

 a. number >= 90 && number < 100 b. ch != 'q' && ch != 'k'

c. (number >= 1 && number <= 9) && number != 5 d. number < 1 || number > 9

41

4. Given that 39.37 inches are equivalent to 1 meter, write a program that converts a given number

of inches to the equivalent length of centimeters.

 #include<stdio.h>

void main()

{

float inches,cm;

clrscr();

printf(“”Enter the value in inches” ”);

scanf(“”%f””,&inches);

cm = (inches/39.37)*100;

printf(“”\n The %.2f inches is equivalent to %.2f centimeter””, inches,cm);

getch();

}

5. Write a C program to print out the square and cube of any integer value from the terminal.

 #include<stdio.h>

#include<string.h>

void main()

{

int number,square,cube;

printf(“ Enter the value :”);

scanf(“%d”,&number);

square = number*number;

cube = number*number*number;

printf(“\n\n The square of given number is:%d””,square);

printf(“\n\n The cube of given number is:%d””,cube); }

6. Write a C program to convert a given character from uppercase to lowercase and vice versa by
using bitwise operator.

 int main()

{

char input;

printf("Character to convert: ");

scanf("%c",&input); //read character

printf("Converted character: %c", input ^ 32);

}

ASCII values of the uppercase and lowercase characters have a difference of 32. For example, in ASCII, “A” is

represented by 6510 while “a” is represented by 9710 (97-65 = 32). At the bit level, only difference between

the two characters is the 5th bit.

65 = 0 1 0 0 0 0 0 1

97 = 0 1 1 0 0 0 0 1

32 = 0 0 1 0 0 0 0 0

Therefore by inverting the 6th bit of a character it can be changed from uppercase to lowercase and vice

versa. Bitwise XOR operation can be used to invert bits. Therefore any ASCII value XOR with 32 will invert its

case from upper to lower and lower to upper.

42

7. Temperatures of a city in Fahrenheit degree are input through a keyboard. Write a program to

convert the temperature into centigrade degrees

 #include <stdio.h>

#include <conio.h>

 void main()

{

 float fahr,cel;

 clrscr();

 printf("\n Let us convet farenhiet to celcius:");

 printf("\n Enter the temperature in farenhiet\n");

 scanf("%f",&fahr);

 cel= 5*(fahr-32)/9.0;

 printf("\nThe value in celcius is : %f", cel);

 getch();

}

8. Using ternary (conditional) operator, write a C program to find the absolute value of a number.

 #include <stdio.h>

#include <conio.h>

void main(){

 int num,r;

 clrscr();

 printf(" Enter a number");

 scanf("%d",&num);

 r=(num>0)?(num):(-num);

 printf("The absolute value of %d is %d",num,r);

 getch(); }

9. printf(“”%–10s””, “”ABDUL””); displays (A) ABDULbbbbb (B) bbbbbABDUL (C) ABDULbbbbbbbbbb

(D) bbbbbbbbbbABDUL

 Ans: A : -10s will print ABDUL in 10 space ABDUL followed by 5 blank space.

10. Read two float numbers and find sum, difference, product and division of the above numbers.

 void main() { float x,y,sum,difference,product,division;

printf("ENTER TWO NUMBERS=\n");

scanf("%f%f",&x,&y);

sum=x+y;

difference=x-y;

product=x*y;

division=x/y;

printf("\n\tSum=%f\tDifference=%f\n\n\tProduct=%f\tDivision=%f",sum,difference,product,division);

}

11. Write a program to read the price of an item in decimal form (like 15.95) and print the output in

paisa (like 1595 paisa) .

 void main() {

int b;

43

float a;

a=15.95;

clrscr();

b=100*a;

printf("%d",b); }

12. Given the values of the variables X,Y and Z write a program to rotate their values such that X has

the value of Y,Y has the value of Z and Z has the value of X.

 void main(){

int x,y,z,temp;

printf("Enter the value of x,y,z\n");

scanf("%d %d %d",&x,&y,&z);

temp=x;

x=y;

y=z;

z=temp;

printf("%d %d %d",x,y,z);}

13. Write a program that reads a floating-point number and then displays right-most digit of

the integral part of the number.

 void main() { int a,e;

float p;

printf("Enter the value of p\n");

scanf("%f",&p);

a=int(p);

printf("%d\n",a);

e=a%10;

if(a>10)

printf("%d\n",e); }

14. Write a program to print the value 345.6789 in fixed-point format with the following

specifications: (a) correct to two decimal place, (b)correct to five decimal place and (c)correct to

zero decimal place.

 #include

#include

void main(){

float a=345.6789;

printf("The two decimal place is: %.2f\n",a);

printf("The five decimal place is: %.5f\n",a);

printf("The zero decimal place is: %.0f",a);

getch(); }

15. What conversion specification would you use to print each of the following?

a. A decimal integer with a field width equal to the number of digits

b. A hexadecimal integer in the form 8A in a field width of 4

c. A floating-point number in the form 232.346 with a field width of 10

d. A floating-point number in the form 2.33e+002 with a field width of 12

e. A string left-justified in a field of width 30

 ANSWER : a) %d b) %4X c) %10.3f d) %12.2e e) %-30s

44

 SUMMARY

• program in any programming language. Generally, program development life cycle contains

the following 6 phases …. Problem Definition , Problem Design , Coding , ,Testing ,

Documentation , Maintenance.

• A computer program is a sequence of instructions written to perform a specified task with a

computer.

• Programming language is a set of grammatical rules for instructing a computer to perform

specific tasks.

• Low Level languages are divided in to Machine language and Assembly language.

• Features of the High Level Languages are(i) Simplicity (ii) Naturalness: (iii) Abstraction: (iv)

Efficiency: (v) Efficiency: (vi) Compactness (vii) Locality (viii) Extensibility.

• Algorithm is a step-by-step method of solving a problem or making decisions.

• A flowchart is a diagrammatic representation that illustrates the sequence of operations to be

performed to get the solution of a problem.

• C has all the advantages of assembly language and all the significant features of modern high-

level language. So it is called a “Middle Level Language”.

• The C programming language is a structure oriented programming language, developed at Bell

Laboratories in 1972 by Dennis Ritchie

• The Features of C programming language are Reliability, Portability, Flexibility, Interactivity,

Modularity, Efficiency and Effectiveness.

• All C programs are having the following sections/parts : Documentation section , Link Section,

Definition Section, Global declaration section, Function prototype declaration section, Main

function, User defined function definition section

• A statement causes the compiler to carry out some action. There are 3 different types of

statements – expression statements compound statements and control statements. Every

statement ends with a semicolon.

• Statement may be single or compound (a set of statements). Most of the statements in a C

program are expression statements.

• C language character set contains the following set of characters... Alphabets ,Digits , Special

Symbols

• Every C program is a collection of instructions and every instruction is a collection of some

individual units. Every smallest individual unit of a c program is called token.

• Keywords are pre-defined words in a C compiler. Each keyword is meant to perform a specific

function in a C program. C language supports 32 keywords.

• The value of the constants can not be modified by the program once they are defined.

Constants refer to fixed values. The different types of constants are : (i) Integer (ii) Real

(iii) Character (iv) String

• A constant is an entity that doesn’t change whereas a variable is an entity that may change.

• Identifier is a collection of characters which acts as name of variable, function, array, pointer,

structure, lable etc...

• A single character enclosed within a pair of single quotes is called single character constant.

Example : ‘A’ . Sequence of characters enclosed in double quotes. Example:“SALEM”

• Data used in c program is classified into different types based on its properties. In c

programming language, data type can be defined as a set of values with similar characteristics.

http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/Computer
http://www.webopedia.com/TERM/C/computer.html

45

All the values in a data type have the same properties. The memory size and type of value of

a variable are determined by variable data type.

• Primary data types are also called as Built-In datatypes. The following are the primary

datatypes in c programming language Integer Data type , Floating Point Datatype ,Double

Datatype, Character Data type

• The void data type means nothing or no value. Generally, void is used to specify a function

which does not return any value

• Derived data types are user-defined data types. The derived datatypes are also called as user

defined data types or secondary data types. In c programming language, the derived datatypes

are created using the following concepts...Arrays , Structures ,Unions and Enumeration

• An operator is a symbol, which represents some particular operation that can be performed

on some data. Operators operate on constants or variables, which are called operands.

• These C operators join individual constants and variables to form expressions.

• A Modulus operator gives the remainder value. This operator is applied only to integral

operands and cannot be applied to float or double.

• Operators, functions, constants and variables are combined together to form expressions.

• Consider the expression A + B * 5. where, +, * are operators, A, B are variables, 5 is constant

and A + B * 5 is an expression.

• If all the variables and constants in an expression are of integer type, then this type of

expression is called as integer expression.

• Bit operators are used to perform bit operations. Bit wise operators in C language are &

(bitwise AND), | (bitwise OR), ~ (bitwise OR), ^ (XOR), << (left shift) and >> (right shift).

• These operators are used to perform logical operations on the given expressions. There are 3

logical operators in C language. They are, logical AND (&&), logical OR (||) and logical NOT (!).

• Conditional operators return one value if condition is true and returns another value is

condition is false. This operator is also called as ternary operator.

• Operators that act upon a single operand to produce a new value are called unary operator.

• C supports special operators like comma operator, size of operator, pointer operators (& and

*) and member selection operators (. and ->).

• The priority or precedence in which the operations in an arithmetic statement are performed

is called the hierarchy of operations.

• When there are more than one operator with same precedence [priority] then we consider

associatively , which indicated the order in‟ which the expression has to be evaluated. It may

be either from Left to Right or Right to Left.

• The combination of backslash(\) and some character which together represent one character

are called escape sequences. Ex.: ‘\n’ represents newline character.

• The comment lines are simply ignored by the compiler. They are not executed. In C, there are

two types of comments. (i) Single line comments (ii) Multi line comments

46

5.

 REVIEW QUESTIONS AND PROGRAMS

PART – A (2 Marks)

1. Define the term Program.

2. What are the different phases available in program development life cycle.

3. What are the different types of errors ?

4. Define Programming Language.

5. Give the different types of programming languages.

6. Write down the advantages and disadvantages of machine language.

7. Write down the advantages and disadvantages of assembly language.

8. Define Algorithm and Flow Chart.

9. List down the steps in executing a C Program.

10. Why C Language is called as Middle Level Language.

11. Define the term constant. List down the various types of constants.

12. What are the rules to be followed when constructing a floating point constant?

13. What are the data qualifiers? List them.

14. What is the output of the following program?

main() {

int x = 10;

printf ("%d %d", ++x, ++x);}

15. What is the numerical value of the expression x >= y || y > x ?

16. Without using a conditional statement how to find whether a given number is odd or even?

17. Using a conditional statement , write a statement to find the biggest number between

given three numbers a , b and c.

18. What is the difference between a statement and a block?

19. Why do we need different data types?

20. Define the term “ Token”. Give some examples.

21. s++ or s = s+1, which can be recommended to increment the value by 1 and why?

22. Define the term operator? How the operators are classified?

23. What is initialization? Why it is important?

24. What is a variable and what is the “value” of the variable?

25. When dealing with very small and very large numbers, what steps would you take to

improve the accuracy of the calculations?

PART – B (3 Marks)

1. What are the features of C Language? Explain

2. What are the characteristics of an algorithm? Explain

3. What are symbols used in flow chart? Explain the purpose of each symbol.

47

4. What are the limitations of using flow chart? Define them.

5. Write down the history of C Language.

6. Mention any six features of C Language.

7. What is a keyword? What are the features of Keyword? How many keywords are available in

C Language?

8. What is typecasting? Give an example.

9. Write a c program to add two numbers without using addition operator

10. Name and describe the basic data types.

11. State the use of const and volatile qualifiers.

12. What do you mean by initialization of a variable? Give examples.

13. What are unary operators? State the purpose of each.

14. What do you mean by hierarchy of operations? Give an example.

15. Why do we use comments in programs? What are the two types of comments?

16. What do the getchar() and putchar() functions do ?

PART – C (5 Marks/ 10 Marks)

1. What is program development life cycle? With a neat diagram, explain different phases of

program development life cycle.

2. Explain the general structure of C Program.

3. With a grammatical representation, explain the various steps involved in executing a C

Program.

4. Briefly explain about the various types of constants used in C Language with examples.

5. Explain about the different types of data types available in C language?

6. Explain type casting with an example program

7. Briefly explain about the precedence and associativity of operators.

8. State the use of conditional operator with an example.

9. What are the special operators available in C language? Explain them

10. Explain different types of operators available in C language? List them with their uses.

11. State the difference between post increment and pre increment operators? Explain your

answer by giving examples.

12. Describe the characteristics and purpose of escape sequence characters.

13. Write a program that will obtain the length and width of a rectangle from the user and

calculate its area and perimeter.

14. Write a program to print the size of various data types in C.

15. Given the values of the variables a,b and c, write a program to rotate their values such that a

has the value of b, b has the value of c, and c has the value of a.

16. Write a program to print out the largest value of given three numbers without using if

statement.

17. Explain about the formatted I/O Statement.

18. Explain about unformatted I/O statements.

48

UNIT – II

DECISION MAKING, ARRAYS AND STRINGS

 OBJECTIVES

 After reading this unit, the student will be able to

• Learn about decision making control statements in C and the way they are used.

• Learn about looping control constructs in C and the technique of putting them to use.

• Describe the use of unconditional statements with their syntax.

• Learn about nested loops and their utility.

• Understand what an array is

• Learn about one-dimensional arrays, their declaration, initialization, ways to access individual

elements and other possible operations.

• Get acquainted with one dimensional string and the way it is declared, initialized,

manipulated, inputted and displayed.

• Define two dimensional and multidimensional arrays

• Know about array of strings, its declaration, initialization, other operations, manipulations,

and uses.

• Get a brief idea about string handling functions

• Write simple programs using decision making statements, arrays and strings

INTRODUCTION

Normally the statements will be executed sequentially. Control statements are used to specify the

order in which the various instructions in a program are to be executed. Control statements are used

to determine the flow of control in a program. The control statements used in C are grouped into

three categories. 1. Decision making or Branching statements 2. Looping statements 3. Unconditional

Statements. Decision making statements are used to execute particular set of instructions for a

particular situation. Looping statements are used to execute a group of instructions repeatedly until

some condition is satisfied. Unconditional statements are used to transfer the control to other

statements without checking any condition.

Arrays are a kind of data structure that can store a fixed-size sequential collection of elements of the

same type. An array is used to store a collection of data, but it is often more useful to think of an array

as a collection of variables of the same type .

In this unit , we will discuss about the different tpes of branching statements, looping statements ,

arrays and Strings.

2.1. DECISION MAKING AND BRANCHING STATEMENTS

Decision making in C

Decision making is about deciding the order of execution of statements based on certain conditions

or repeat a group of statements until certain specified conditions are met. C language handles

decision-making by supporting the following statements,

49

a. if statement
b. switch statement
c. conditional operator statement
d. goto statement

The if statement may be implemented in different forms depending on the complexity of conditions

to be tested. The different forms are,

• Simple if statement

• If....else statement

• Nested if....else statement

• else if statement

 2.1.1. Simple if Statement

Simple if statement is used to execute some statements for a particular condition. The general form

of if statement and flow chart is shown below:

Syntax Flow chart

 if (condition)

 {

 statement-1;

 }

 statement -2;

where condition is a relational or a logical expression. The condition must be placed in parentheses.

statement-1 can be either simple or compound statement (group of Statements). The value of

condition is evaluated first. The value may be either true or false. If the condition is true, the

statement – 1 is executed and then the control is transferred to statement – 2. If the condition is false,

the control is transferred directly to the statement-2 without executing the statement-1.

The conditional statement should not the terminated with Semi-colons (ie ;)

Example 1: Write a program to check

equivalence of two numbers. Use “if”

statement

Example 2: Write a Program to check whether

a given number is less than 20.

include<stdio.h>

include<conio.h>

void main()

{

int m,n; clrscr();

printf(“\n Enter two numbers:”);

scanf(“%d %d”, &m, &n);

if(m= =n)

printf(“”\n two numbers are equal””);

getch(); }

#include <stdio.h>

include<conio.h>

void main ()

{

int a;

scanf(“%d”, &a);

if(a < 20)

{

printf("a is less than 20\n");

} printf("value of a is : %d\n", a); }

50

 2.1.2. if …. else Statement

The simple if statement will execute a single statement, or a group of statements, if the condition lis

true. If the condition is false, it does nothing.

If …else statement is used to execute one group of statements if the condition is true. The other

groups of statements are executed when the condition is false. General form of if…else statement and

flow chart is shown below:

Syntax Flow chart Explanation

 if (condition)

 {

 statement-1;

 }

 else

 {

 statement-2;

 }

 statement -3;

statement-1 and statement-2

can be simple or compound

statements. If the condition is

true, the statement-1 is

executed; otherwise the

statement-2 is executed. In

either case, either statement-1

or statement-2 will be

executed, not both. In both the

cases, the control is transferred

subsequently to statement-3.

Example 1: Write a program to print the given

number is even or odd.

Example2: Develop a program to accept two

numbers and find largest number and print.
include<stdio.h>

void main()

{ int n;

printf(“”Enter a number:””);

scanf(“”%d””, &n);

 if((n%2)==0)

printf(“”\n The given number is EVEN” ”);

else

printf(“”\n The given number is ODD” ”);

}

include<stdio.h>

void main()

{ int a,b;

printf(“Enter Two numbers:”);

scanf(“%d%d”, &a,&b);

if(a>b)

printf(““\n %d is largest number””,a);

else

printf(“”\n %d is largest number””,b);

}

 2.1.3. Nested ifs

A nested if statement is an if statement which is within another if – block or else – block. If an if…else

is contained completely within another construct, then it is called nesting of if’s.

Syntax Flow chart

.if (condition-1)
 {
 if (condition-2)
 {
 statement-1;
 }
 else
 {
 statement-2;
 }
else
 {
 statement -3;
 }
}
Statement – 4;

51

If the condition-1 is false, the statement-3 will be executed. Otherwise it continues to test condition-

2. If the condition-2 is true, the statement-1 will be executed; otherwise the statement-2 will be

executed and then the control is transferred to statement-4. Second if…else construction may be

nested in the if block or else block of the first if…else construction. The statements between the

keywords if and else are called if block and statements after the else form the else block.

Example: Program to select and print the largest of the three float numbers using nested “if-
else” statements.

include<stdio.h>

 # include<conio.h>

void main() {

float a,b,c;

printf(“Enter Three Values:”);

scanf(“%f%f%f ”, &a, &b, &c);

printf(“\n Largest Value is:”) ;

 if(a>b)

 { if(a>c)

 printf(“ %f ”, a);

 else

 printf(“ %f ”, c); }

else

 { if (b>c)

 printf(“ %f ”, b);

 else

 printf(“ %f ”, c); }

getch(); }

In the above example second if….else construct is used within the else block and if block of the first

if…else construct.

 2.1.4. Else if ladder

The else-if ladder is mutiway branching statement. It is used to test many conditions. .

Syntax Flow chart

The conditions are evaluated from top to bottom. When a true condition is evaluated, the statement

associated with it is executed and the rest of the ladder is omitted. If none of the conditions is true

http://1.bp.blogspot.com/-3QXfxZTx2do/TfaS7rKURjI/AAAAAAAAAGc/zMEtUm05TiY/s1600/6.GIF
http://2.bp.blogspot.com/-Oes0joarxPA/TfaTHTa1kMI/AAAAAAAAAGg/XThq6n8R57o/s1600/7.GIF

52

then default statement is executed. If the default statement is not present, no action taken place

when all other conditions are false.
Example

The marks obtained by a student in 5 different subjects are input through the keyboard. The student

gets a division as per the following rules: (i) Percentage above or equal to 60 - First division

(ii) Percentage between 50 and 59 - Second division (iii) Percentage between 40 and 49 - Third division

(iv) Percentage less than 40 - Fail . Write a program to calculate the division obtained by the student.

main()

{
Int m1, m2, m3, m4, m5, per ;
per = (m1+ m2 + m3 + m4+ m5) / 5 ;
if (per >= 60)

printf ("First division") ;
else if (per >= 50)

printf ("Second division") ;
else if (per >= 40)

printf ("Third division") ;
else

printf ("fail") ;
}

If the first condition (per >= 60) is true, then “First division” is printed. and the control will come out

of the loop. If the first condition is false, then the next statement (per >= 50) will be evaluated.

Depending upon the result, the next statement is executed or control will come out of the loop. The

above procedure is continued until the last else if.

 2.1.5. Switch Statement

1. The switch statement causes a particular group of statements to be chosen from several
available groups.

2. The selection is based upon the current value of an expression which is included within the
switch statement.

3. The switch statement is a multi-way branch statement.

4. In a program if there is a possibility to make a choice from a number of options, this structure
is useful.

5. The switch statement requires only one argument of int or char data type, which is checked
with number of case options.

6. The switch statement evaluates expression and then looks for its value among the case
constants.

7. If the value matches with case constant, then that particular case statement is executed.

8. If no one case constant not matched then default is executed.

9. Here switch, case, break and default are reserved words or keywords.

10. Every case statement terminates with colon “:”.

11. In switch each case block should end with break statement

switch (expression)

{

case constant1 ;

 statement – 1 ;

53

 break;

case constant2 ;

 statement – 2 ;

 break;

default:

 default statement ;

 }

statement –x;

where statement-1, statement-2 are statement lists and may contain zero or more statements. The

expression following switch must be enclosed in parentheses and the body of the switch must be

enclosed within curly braces. Expression may be a variable or integer expression. Case labels can be

only integer or character constants.

case labels do not contain any variable names. case labels must all be different . case labels end with

a semicolon.

The switch structure starts with the switch keyword. It contains one block which contain the different

cases. Each case contains different statements to be executed corresponding to different conditions

and ends with the break statement. Break statement transfers the control out of the switch structure

to statement – x. If the value of variable is “constant1”, the “case constant1: “is executed. If value is

“constant2”, the “case constant2” is executed and so on. If the value of the variable does not

correspond to any case, the default case is executed.

Flow chart for switch Statement

Example

 void main ()

 {

 char ch;

 int a,b,c=0;

 printf (“Enter the two values”);

 scanf(“%d%d”,&a, &b);

 printf (“enter the operator (+ - * /)”) ;

54

 ch = getchar();

 switch(ch)

 {

 case ‘’+’’ : c = a + b;

 break;

 case ‘’-‘’ : c = a – b;

 break;

 case ‘’*’’ : c = a*b;

 break;

 case ‘’/’’ : c = a/b;

 break;

 default : printf (“The operator is invalid”) ;}

 printf (“The result is %d”, c);

 }

RULES FOR FORMING SWITCH STATEMENT

1. The order of the case may be in any order. It is not necessary that order may be in as ascending

or descending.

2. Mixing of integer and character constants in different cases is allowed.

3. If multiple statements are to be executed in each case, there is no need to enclose within a

pair of braces.

4. If default statement is not present, then the program continues with the next instruction.

5. switch statement may occur within another switch statement.

6. If the break is not used in a certain case, the statements in the following cases are also

executed irrespective of whether that case value is true or not. This execution will continue

till a break is encountered. For example, consider the following program,

switch(ch)

{

case ‘’a’’:

case ‘’b’’:

case ‘’i’’ : printf (“The vowel i \n”);

case ‘’o’’: printf (“The vowel o”);

break ;

case ‘’u’’:

default : printf (Not vowel);

}

7. In the above example, if the value of ch = ‘i’, then the display will be

The vowel i

The vowel o

8. When one of the case statements is evaluated as true, all statements are executed until a

break statement is executed.

 2.1.6. GOTO Statement

The goto statement is used to transfer the control from one point to another. The general form of the

goto statement is

goto label;

where label is an identifier. Label is the name given to the target place to which the control will be

transferred. Control may be transferred to any other statement within the program. The label is

55

placed immediately before the statement where the control is to be transferred. The label can be any

where in the program either before or after the goto label statement. The general form of the target

place is

Label: statement (s)

The goto statement transfers the control without checking any condition. That is why this statement

is sometimes called as unconditional goto statement. Goto statement may be useful for exiting from

any levels of nesting in one jump.

It is possible to have a forward jump or a backward jump.

• If the “label:” is before the statement “goto label;” a loop will be formed and some statements

will be executed repeatedly. Such a jump is known as a „backward jump‟.

• If the “label:” is placed after the “goto label;” some statements will be skipped and the jump is

known as a “forward jump”.

 Forward jump Backward jump

Example

 main ()

 {

 int x = 10;

 loop:

 printf (“x is %d \n”, x);

 x++;

 if (x < 100) goto loop;

 printf (“End of the goto statement”);

 }

2.2. LOOPING STATEMENTS

Loops are used to execute a same set of instructions for many times. The number of times a loop

executed is given by some condition. The loop structures available in C are

1) for loop 2) while loop and 3) do…while loop

 2.2.1. for loop

The for loop is used to repeat a statement or block of statements for a known number of times. The

general format of the for loop is

56

for (initialization; condition test; increment)

{

statements(s)

 }

Initialization is an assignment statement, that is used

to set the loop control variable. The condition test is a

relational or logical expression which determines when

to end the loop. The increment is a unary or an

assignment expression. This section is used to alter

the value of the variable initially assigned by

initialization. These three sections must be separated

by semicolon. The statement which forms the body of

the loop can be either a single statement or a

compound statement (group of statements).

When the “for statement” is executed, the value of

conditional test is evaluated and tested before each pass through the loop. Incrementation is carried

out at the end of each pass.

The for loop continues to execute as long as the value of the conditional test is true. When the value

of condition becomes false, the program comes out of the for loop.

Execution of the for loop

1. Initialization of control variable is done first.

2. The value of control variable is tested using condition test. If the value is true, the body of the

loop is executed; otherwise the loop is terminated.

3. After the body of the loop is executed, the control is transferred back to for statement.

Control variable is altered and now the new value is tested. This process continues till the

value of the control variable fails to satisfy the test condition.

Example: To print odd numbers from 1 to 13

main()

{

 int i;

 for (i=1; i<=13; i=i+2)

 printf(“%d”, i); }

Output : 1 3 5 7 9 11 13

The above for loop initialized the integer variable i to 1 and increments it by 2 every time the loop is

executed.

In for loop, the conditional test is always performed at the starting of the loop. The body of the loop

is not executed if the condition is false in the beginning itself. Thus the minimum number of loop

execution is zero.

All the three sections need not be present in the for statement. But semicolons are necessary and

must be shown. If the first section is omitted, the initialization is to be done before the for loop. If

the third section is omitted, the variable is incremented in the body of the loop. If the second section

is omitted, it will assumed that the permanent value is 1; then the loop will continue indefinitely.

57

Different forms of for loop

Different forms of statements to print the numbers from 1 to 10 are given below.

1. The initialization, testing and incrementation of the control variable is in the for statement
itself.

main ()

{ int i;
for (i = 1; I <= 10; i = i + 1)
printf (“%d”,i);

}

2. Incrementing the control variable in the body of the for loop.

main ()

{
int i;
for (i = 1; i <= 10;)
{
printf (‘%d’, i) ;
i = i + 1;
}

}

3. Initialization in the declaration statement itself, but before the condition..

 main ()

{ int i = 1;

for (; i <= 10 ; i = i + 1)

printf (‘%d’, i);

}

4. Initialization is in declaration statements and incrementation is in the body of the loop.

main()

 { int i = 1;

for (;i <= 10;)

{

printf (‘%d’, i);

i = i + 1;

}

 }

5. Comparison and incrementation is made through the same statement

main()

{ int i ;

for (i = 0; i++ < 10;)

printf (“%d”, i);

}
Multiple Initializations and Increments in for loop

The initialization section and increment section can contain more than one variable; These variable

are separated by the operator comma and evaluated from left to right.

58

Example

 for (i = 0, j = 10; I < 50; i++, j--)
 {
 body of the loop
 }
If the multiple expressions are to be checked, then they are connected by logical operators.

Infinite loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally used for

this purpose. Endless loop can be formed by leaving the conditional expression empty. Infinite loop

can be formed in two ways. They are

By writing no condition. For example - for (i = 1; ;i++)

By omitting all the sections of a for statement - for (;;)

When the conditional expression is absent, it is assumed to be true. You may have an initialization and

increment expression, but C programmers more commonly use the for(;;) construct to signify an

infinite loop.

Time Delay Loop

For loop can also be used without the body of the loop. This type of loop create time delays

 for (i = 0; i<=1000; i++);

is an example of a time delay loop. A for statement with a semicolon at the end of the statement Is
called null statement.

 2.2.2. while loop

+The while loop construct contains only the condition. The general format of the while loop is

Initialization Expression;

while(Test Condition)

{ Body of the loop

Updation Expression }

where body of the loop is either an empty statement, a single statement or a block of statements. The

condition may be any expression. The condition value may be zero or non-zero.

1. The while is an entry – controlled loop statement.

2. The test condition is evaluated and if the condition is true, then the body of the loop is
executed.

3. The execution process is repeated until the test condition becomes false and the control is
transferred out of the loop.

4. On exit, the program continues with the statement immediately after the body of the loop.

5. The body of the loop may have one or more statements.

6. The braces are needed only if the body contains two or more statements.

7. It‟is a good practice to use braces even if the body has only one statement.

Example

The following example prints the value from 1 to 100

59

 {

 int i = 1 ;

 while (i<=100)

 {

 printf (“%d\n”,i);

 i++;

 }

 }

Like for loop, while loop checks the condition at the top of the loop. So the body of the loop is not

executed, if the condition is false at the starting of the loop.

The for loop can be used if the number of iterations are known before the loop starts executing.

When the number of iterations is not known, then while loop can be used.

 2.2.3. do…..while loop

The do while loop is sometimes called as the do loop in C. Unlike for and while loops, this loop checks

the condition at the end of the loop. So the body of the loop is executed at least once, even if the

condition is false initially. The general form of do…while loop is

Initialization Expression;

 do

{ Body of the loop

Updation Expression; }

while (Test Condition);

The do…while loop repeats until the condition becomes false. In the do…while, the body of the loop

is executed first, then the condition is checked. When the condition becomes false, control is

transferred to the statement after the loop.

Example :

To print the values from 1 to 10

 main()

 {

 int i = 1;

 do

 {

 printf (“%d\n”,i);

 i = i + 1;

 } while (i<=10);

 }

60

Difference between while loop and do-while loop

The difference between the while and do…while is illustrated by

the following program segments

while loop

 main ()

 {

 while (100 < 10)

 printf (“False”);

 }

In the above program, the condition is false for the first line. So the printf () will not be executed at

all.

do…while loop

 main ()

 {

 do

 {

 printf (“False”);

 } while (100 < 10);

 }

In the above program, the printf statement will be executed only once.

Nested loops

A loop can also be used within loops.

1. i.e. one for statement within another for statement is allowed in C. (or „C‟ allows

multiple for loops in the nested forms).

2. In nested for loops one or more for statements are included in the body of the loop.

Two loops can be nested as follows.

Syntax:

for(initialize ; test condition ; increment) /* outer loop */

 {

 for(initialize ; test condition ; increment) /* inner loop */

 {Body of loop; }

 }

For example, to find the factorial value of number between 1 to 10, the program is

61

 main ()
 {
 int i, j, factorial;
 for (i=1; i<=10; i++)
 {
 factorial = 1;
 for (j = 1; j<= i; j ++)
 {factorial = factorial * j;}
 printf (“Factorial value of %d is %d”, i, factorial) ;
 }
 }

One loop can be completely contained within the other. But there can be no over lap. Each loop must

have different control variable.

counter controlled and sentinel controlled loops

Based on the nature of the control variables and the kind of value assigned to, the loops may be

classified into two general categories; counter controlled and sentinel controlled loops.

Counter controlled loops : The type of loops, where the number of the execution is known in advance

are termed by the counter controlled loop. That means, in this case, the value of the variable which

controls the execution of the loop is previously known. The control variable is known as counter. A

counter controlled loop is also called definite repetition loop.

Example : A while loop is an example of counter controlled loop.

Sentinel controlled loop : The type of loop where the number of execution of the loop is unknown, is

termed by sentinel controlled loop. In this case, the value of the control variable differs within a

limitation and the execution can be terminated at any moment as the value of the variable is not

controlled by the loop. The control variable in this case is termed by sentinel variable.

Example : do....while loop is an example of sentinel controlled loop.

entry controlled and exit controlled loops

Depending on the position of the control statement in the loop, a control structure can be classified

into two types; entry controlled and exit controlled. They are described below.

Entry controlled loop : The types of loop where the test condition is stated before the body of the

loop, are known as the entry controlled loop. So in the case of an entry controlled loop, the condition

is tested before the execution of the loop.

http://www.blogger.com/post-edit.g?blogID=6445081057672214592&postID=5787088856362194933
http://www.blogger.com/post-edit.g?blogID=6445081057672214592&postID=5787088856362194933
http://4.bp.blogspot.com/-fH2l0bUji28/Tfaoh_H-OlI/AAAAAAAAAGk/RbtiIHp0LnQ/s1600/1.GIF

62

If the test condition is true, then the loop gets the execution, otherwise not. For example, the for loop

is an entry controlled loop. In the given figure, the structure of an entry controlled loop is shown.

Exit controlled loop : The types of loop where the test condition is stated at the end of the body of

the loop, are know as the exit controlled loops. So, in the case of the exit controlled loops, the body

of the loop gets execution without testing the given condition for the first time. Then the condition is

tested. If it comes true, then the loop gets another execution and continues till the result of the test

condition is not false. For example, the do....while loop is an exit controlled loop. The structure of an

exit controlled loop is given in the given figure.

Comparison between the three loops, for, while, do....while.

No. Topics For loop While loop Do...while loop

01 Initialization of

condition

variable

In the parenthesis of the

loop.

Before the loop. Before the loop or in

the body of the loop.

02 Test condition Before the body of the

loop.

Before the body of

the loop.

After the body of the

loop.

03 Updating the

condition

variable

After the first execution. After the first

execution.

After the first

execution.

04 Type Entry controlled loop. Entry controlled

loop.

Exit controlled loop.

05 Loop variable Counter. Counter. Sentinel & counter

 2.2.4. Break Statement

1. A break statement terminates the execution of the loop and the control is transferred to the

statement immediately following the loop.

2. The break statement is used to terminate loops or to exit from a switch.

3. It can be used within a for, while, do-while, or switch statement.

4. The break statement is written simply as break;

Example

 main()

 {

 int ch = 65;

 for(;;ch++)

 {

 printf(“%c”, ch);

 if (ch == 97) break;

 }

 }

 2.2.5. Continue Statement

1. The continue statement is used to bypass the remainder of the current pass through a loop.

2. The loop does not terminate when a continue statement is encountered.

http://www.blogger.com/post-edit.g?blogID=6445081057672214592&postID=5787088856362194933

63

3. Instead, the remaining loop statements are skipped and the computation proceeds directly to
the next pass through the loop.

4. The continue statement can be included within a while, a do-while, a for statement.

5. It is simply written as “continue”.

6. The continue statement tells the compiler “Skip the following Statements and continue with the
next Iteration”.

7. In “while‟ and “do‟ loops continue causes the control to go directly to the test – condition and
then to continue the iteration process.

8. In the case of “or‟ loop, the updation section of the loop is executed before test-condition, is
evaluated.

Example

 main()

 { int number, sum=0, count=0;

 while (count <= 10)

 {

 printf(“\nEnter the number: “);

 scanf(“%d”,&number);

 if(number <=0) continue;

 sum + = number;

 count++;

 } }

The above program is used to find the sum of positive numbers.

2.3. ARRAYS

 2.3.1. Introduction

An array contains a collection of data elements of the same type. An array is referenced by a common

name. Each element of an array is stored in successive locations of the memory.
Types of Arrays: Arrays can be used to represent not only simple lists of values but also tables of
data in two or three or more dimensions.

a. One – dimensional arrays

b. Two – dimensional arrays

c. Multidimensional arrays

64

 2.3.2. Array elements and Subscript

The elements of the array are known as members of the array. Each array element is identified by

assigning a unique subscript or index to it. The dimension of an array is determined by the number of

subscripts needed to identify each element. A subscript is enclosed in bracket [] placed after the array

name. Space is not allowed between array name and subscript. A subscript is an integer value starting

from zero.

Thus the array named mark with 5 elements will be represented as mark[0], mark [1], mark[2], mark

[3], mark [4], and stored in successive locations of the memory as shown in the following figure.

mark[0] mark[1] mark[2] mark[3] mark[4]

Subscripts always start with 0. So, for an array of N elements, the last element has an index of N-1.

 2.3.3. One dimensional array declarations

In one-dimensional array, single subscript is used. The one-dimensional array is also called as list.

Before using an array, it must be declared. An array is defined in the same way as a variable. Each

array name must be accompanied by a size specification (i.e. number of elements). The general from

for array declaration is

storage-type data-type array_name[SIZE]

where storage-type is optional. It may be either static, extern, automatic. The data-type specifies the

type of element that will be stored in the array. SIZE is an integer constant, indicating the maximum

number of elements of the array. The rules for forming array names are the same as for variable

names.

Examples

(i) int number[100]; (ii) char text[100]; (iii) float ave[10]; (iv) signed char name[50];

In the first example, int specifies the type of the variable and the word number specifies the name of

the array. The number 100 indicates the maximum number of elements in the array. This number is

called as ‘dimension’ of the array. The bracket ([]) indicates that the given variable is an array.

The size of array should be a constant value.

The main purpose of the declaration of the array is to reserve space in memory. For example when

declaring the array

 int marks[10];

reserves the 10x 2 = 20 bytes in memory. Each int occupies 2 bytes of memory.

 2.3.4. Initialization of Arrays

After an array is declared, its elements must be initialized. Otherwise they will contain “garbage”.

 An array can be initialized at either of the following stages. (i) At compile time (During declaration
of the array) (ii) At run time. (using for loop and scanf() functions)

65

1. During the declaration of the array

The general form of declaring the array during the initialization is

data_type array_name[SIZE] = {list of values}

The values in the list must be separated by commas.

Examples : int mark[5] = {55,60,70,23,100}; float avg[3] = {25.6,75.5,23.3};

In the first example, the size of the array is 5 and the values 55, 60, 70, 23, 100 will be assigned to the

variable mark[0], mark[1], mark[2], mark[3] and mark[4] respectively.

If the number of values in the list is less than the size of the array, the remaining elements will be set

to zero automatically.

For example, the statement float height[4] = {0.25, 0.50}; will initialize the first two elements 0.25

and 0.50 to height[0] and height[1] respectively. The remaining two elements height[2] and height[3]

will be set to 0.0

The size of the array may be omitted. In this situation, the compiler allocates enough space for all the

elements given for initialization. For example, the statement int marks[] = {25, 50, 100, 75}; will

declare the size of the array is 4.

If there are more elements than the declared size, the compiler will produce an error.

int number[3] = {10,20,30,40}; will not work. It is illegal in C.

2. Initialization of an array using for…loop.

for…loop is used to initialize values for array elements. for…loop can be used when initializing the

constant value or values which are having some relation to the array which are having large number

of elements.

Examples

(i) int array[100], i ;

 for (i = 0; i < 100; i++)

 array [i] = 0;

 The above for…loop initialize all the elements with the value of 0.

(ii) int array[50], i, j = 0;

 for (i = 0; i < 50; i++)

 {

 array [i] = j;

 j = j + 2;

 }
 The above for…loop initializes the value 0 to array[0], 2 to array[1], 4 to array[2] and so on.

(iii) To initialize different values, scanf() function is used in the body of the for-loop
 statement.

int array[50], i ;

for (i = 0 ; i < = 50; i++)

scanf(“%d”, &array[i]);

66

 2.3.5. Two dimensional Arrays

One-dimensional arrays have a single subscript. But two-dimensional arrays have two subscripts. The

two dimensional array is called a matrix or table. Two dimensional arrays are used to represent the

values which are in matrix form. A two dimensional array can be represented with two pairs of square

bracket.

Two-dimensional array can be represented in the following form

data-type array_name[subscript1][subscript2]

where subscript1, subscript2 are positive value integer constants or expression. This two subscripts

indicates the number of array elements associated with each subscript.

Two square brackets are used to indicate the value of two subscripts. Assume the values of two

subscripts as ‘m’ and ‘n’. Then two dimensional array can be arranged as a table with m rows and n

columns.

Examples : float table [3] [3]; int marks [10] [5];

The first example defines table as a floating-point array having 3 rows and 3 columns. An array

element starts with an index of 0 so that the individual elements of the array are

 table [0][0] [0][1] [0][2]

 [1][0] [1][1] [1][2]

 [2][0] [2][1] [2][2]

The total number of elements of the two dimensional array can be calculated by multiplying the

number of rows and number of columns.

Example for a two - dimensional array

A typical example for a two – dimensional array is the marks obtained by 50 students in 5 tests. To

represent the above values 50*5 matrix is used. This can be declared by

int marks [50] [5];

The first index ([50]) is the number of the students and the second index ([5]) is the number of tests.

This declaration allocates 500 memory locations. The test number is the column number and the

student number is the row number. In each row, the marks obtained by the student in all the 5 tests

are represented.
 Test1 Test2 Test3 Test4 Test5

student1 90 96 98 100 99

student50 79 87 88 67 55

67

INITIALIZATION OF A TWO DIMENSIONAL ARRAY

Care must be given to the order in which the initial values are assigned to the array elements. The

second subscript increases most rapidly and the first subscript increases least rapidly. The elements

of a two dimensional array will be assigned row wise. That is, all the elements of the first row will be

assigned, then all the elements of the second row and so on. For example, consider the following two-

dimensional array mark [4] [3] (three test marks of four students)

 75 25 30

 mark [4] [3] = 45 50 22

 40 72 45

 41 55 78

The above example array can be initialized as: int mark [4] [3] =

{75,25,30,45,50,22,40,72,45,41,55,78};

The first subscript ranges from 0 to 3 and the second subscript ranges from 0 to 2. Array elements will

be stored in continuous locations in memory. Two dimensional arrays are also can be initialized in the

following way

 int mark [4] [3] = {

 {75, 25, 30},

 {45, 50, 22},

 {40, 72, 45},

 {41, 55, 78},

 };

The three values in the first inner pair of braces are assigned to the array elements in the first row,

the values in the second inner pair of braces are assigned to the array elements in the second row and

so on. An outer pair of braces is required, containing the inner pairs. Each line contains the three

marks of one student separated by comma and enclosed in braces and separated from the next

students’ marks by comma. The whole array is enclosed in a pair of braces.

While initializing an array, the second dimension is a must. The first dimension (row) is optional. Thus

the following two declarations

int mark [2] [3] = {12, 24, 36, 48, 60, 70};

int mark [] [3] = {12, 24, 36, 48, 60, 70};

are equal.

If the values are missing in an initialization, they are automatically set to zero. For example

 int mark [4] [3] = {

 {12, 75},

 {55, 75, 23},

 {45, 98, 57},

 {48}

 };

will assign the following values

68

 mark[0] [0] = 12 mark[0] [1] = 75 mark[0] [2] = 0

 mark[1] [0] = 55 mark[1] [1] = 75 mark[1] [2] = 23

 mark[2] [0] = 45 mark[2] [1] = 98 mark[2] [2] = 57

 mark[3] [0] = 48 mark[3] [1] = 0 mark[3] [2] = 0

Initialization by using for statement

The initialization can be done by using two for-loop statements. Here all the values are initialized to

zero.

 for (i = 0; i < 4; i++)

 {

 for (j = 0; j < 3; j++)

 {

 mark[i] [j] = 0;

 }

 }

The for statement is used when initializing the same value or values which are having some

relationship to each other to array elements.

Two dimensional arrays are used to iitailize a set of string values. For example to store the name of 10

students (each name with a maximum of 30 characters) in a class, the following code is used

for (i = 0; i < 10; i++)

 {

 for (j = 0; j < 30; j++)

 {

 scanf(“%s”, name[i]);

 }

}

 2.3.6. Multi Dimensional Arrays

An array of three or more dimension is called as multidimensional array. The general form of a multi-

dimensional array is

data-type array_name[subscript1][subscript2]][subscript2]

where subscript I is size of the i-th dimension.

Examples

 float sales[4][5][12]; int table[2][4][10][5];

where sales is a three-dimensional array, contains 240 float type elements. Similarly table is a four

dimensional array containing 400 elements of int data type. The array sales may represent a data of

sales during the last four years from January to December in five cities of a particular company.

Multi dimensional array can contain as many indices as needed. However the amount of memory

needed for an array rapidly increases with each dimension. For example

 char arr [100][365][24][60][60];declaration would consume more than 3 gigabytes of memory.

69

Memory does not contain rows and columns, so whether it is a one dimensional array or two

dimensional arrays, the array elements are stored linearly in one continuous chain. For example,

the multidimensional array

int arr[3][4][2]= {

{ {1,2},{3,4},{5,6},{7,8} },

{ {9,1},{1,2},{3,7},{4,7} },

{ {6,1},{18,19},{20,21} },

};

 is stored in memory just like an one-dimensional array shown below:

2.4 CHARACTER STRINGS

 2.4.1. Introduction

A group of characters defined between double quotation marks is called as a string constant. A group

of characters can be stored in a character array. Character arrays are called as “strings”.

Whenever a string is stored in memory, the NULL character (‘\0’) is automatically added to its end.

This Null character indicates the end of the string. A string not terminated by a ‘\0’ is not really a

string, but merely a collection of characters.

 2.4.2. Declaration and Initialization of string

Strings are declared by using the data-type char. The general form for declaring the string is

char array-name [size];

The size determines the number of characters in the array-name.

Example: (i) char name[10]; (ii) char place[20];

In the second example, the character array ‘place’ can store 19 characters. place [0] to place [18] is

for storing valid characters and place [19] is used for storing the NULL character ‘\0’. When declaring

character arrays, always allow one extra element space for the null character.

When a string is read by using any of the string-based input functions, namely scanf() and gets(), the

NULL character is automatically appended to the string.

Initialization of String

Initialization of character array is possible during the declaration. The strings are initialized in the

following ways:

Method 1 : char name[7] = {‘’t’’, ‘’e’’, ‘’m’’, ‘’p’’, ‘’l’’, ‘’e’’, ‘’\0’’};

Method 2 : char name[7] = {“”temple””};

70

When using the method 2, the declaration ‘\0’ is not necessary. C inserts the NULL character

automatically. But when initializing character array by listing its elements, NULL termination must be

specified at the end.

 2.4.3. Reading Strings from Terminals

There are two ways to read a string from the terminal. They are (1) by using the scanf function and

(2) by using gets function.

(i) By using scanf function

The scanf function with %s format specification can be used to read a string of characters. For example

 char name[30];

 scanf (“%s”, name);

is used to input a string of 30 characters.

The disadvantage of scanf function is that there is no way to enter a multi-word string into a single

variable. The scanf statement terminates its input on the first blank space it finds. Therefore if the

input for the above statement is

SENTHIL KUMAR

then only the string SENTHIL will be read into the array name, since the blank space after the word

‘SENTHIL’ will terminate the string. During the reading of strings, in scanf statement, the ampersand

(&) is not required before the variable name. The scanf function automatically terminates the string

with a NULL character.

(ii) By using gets

gets() function is also used to read a string from the keyboard. It eliminates the disadvantages of scanf

function. It is terminated when an enter key is pressed. The spaces and tabs are acceptable as part

of the input string. The program can be written in the following way

main ()

 {

 char name[30];

 print (“Enter a name \n”);

 gets (name);

 }

The above program is used to accept a string, which contains blank spaces and tabs. The value entered

upto new line character or till the enter key is pressed is stored in the array name. If the input is

SENTHIL KUMAR

then the whole string SENTHIL KUMAR is stored in the variable name. The disadvantage of gets is, it

can be used to read only one string at a time. For example, the statement

gets (name, address)

is not possible. It is possible to read more than one string by using a single scanf statement.

71

 2.4.4. Writing of Strings

(I) By using printf () function

printf function with %s format is used to print strings on the screen. The format specifier %s is used

to display a character array that is terminated by the NULL character. For example, the statement

printf (“%s”, name);

can be used to display the entire contents of the array called “name”.

(ii) By using puts () function

puts function is also used to print string on the screen. The general format of the puts function is

puts (variable name or string);

Unlike printf, puts() can output only one string at a time. When attempting to print two strings using

puts (), only the first one will be printed.

Example

void main()
{
char name[30];
puts(“Enter name”);
gets(name);
puts(name);
puts(“Good Morning”)’
}

OUTPUT:
Enter name
SURESH KUMAR
SURESH KUMAR
GOOD MORNING

 2.4.5. Comparison of two strings

It is not possible to compare the two strings by using = = operator. For example (if (str1 = = str2) is not

a valid statement in ‘C’. To compare two strings, the two strings are compared character by character.

The comparison is done until there is a difference or one of the strings terminates with a null character,

whichever occurs first. The following program is used to compare two strings.

Example

void main()

{

char name1[15], name2[15];

int i = 0;

printf (“\n Enter the First string:”);

scanf(“%s”, name1);

printf (“\n Enter the Second string:”);

scanf(“%s”, name2);

while(name1[i] == name2[i] && name1[i]!= ‘’\0’’ && name2[i] != ‘’\0’)

 i++;

If (name1[i] == ‘’\0’’ && name2[i] == ‘’\0’)

 printf (“The two strings are equal”);

else

 printf(“ The two strings are not equal);

}

72

 2.4.6. String handling functions

The C library has large number of string-handling functions. These functions can be used to carry out

many of the string manipulations. The most commonly used string-handling functions are shown

below:
Function Use Function Use

strcat() To concatenate two strings strcpy() To copy one string over another string

strcmp() To compare two strings strlen() To find the length of the string

strcat() function

The strcat function is used to join two strings. The general form of strcat() function is

strcat(string1,string2);

where string1 is a string variable and string2 may be a string variable or a string constant. When the

function strcat is executed, string2 is appended to string1. strcat() removing the NULL character at

the end of string1 and placing string2 from there. The string at string2 remains unchanged. For

example, consider the following strings:

name1 S I V A \0

name2 R A M \0

Execution of the statement

strcat(name1,name2);
will result in

name1 S I V A R A M \0

name2 R A M \0

Make sure that the size of the string1 (to which string2 is appended) is large enough to accommodate

the final string.

strcat function may also append a string constant to a string variable. The following is valid:

strcat (name, “”SEKARAN”);

C permits nesting of strcat functions. For example, the statement

strcat (strcat (string1, string2), string3);

is allowed and concatenates all the three strings together. The resultant string is stored in string1.

strcmp() function

It is not possible directly to compare the value of 2 strings in a condition like if(string1==string2) .

strcmp function compares two strings character by character(ASCII comparisons) and returns a value.

Value may be less than 0, or equal to 0, or greater than 0. The general structure of strcmp () function

is

strcmp(string1,string2);

where string1 and string2 are the two strings to be compared. string1 and string2 may be either a

string constant or a string variable. The following example illustrates the use of strcmp function.

73

Example:

1. strcmp(“Newyork”,”Newyork”) will return zero because 2 strings are equal.

2. strcmp(“their”,”there”) will return a 9 which is the numeric difference between ASCII ‘i’ and

ASCII ’r’.

3. strcmp(“The”, “the”) will return -32 which is the numeric difference between ASCII “T” & ASCII

“t”.

strcpy() function

strcpy() copies the second string to the first string specified in the strcpy () parameter. The general

form is

strcpy(string1,string2);

where string1 is destination, string2 is source, where string1 is an array variable and string2 is an array

or a string constant.

Examples

1. strcpy (str1, “”ABCD”); will copy the string ‘ABCD’ to the array str1.

2. strcpy (name, name1); will copy the contents of the array name1 to the array name.

strlen() function

strlen() function is used to find the number of characters in string.

n = strlen (string);

where n is an integer variable which receives the value of the length of the string. The argument may

be a string constant or a string variable. The counting ends at the first NULL character. NULL character

is not included for counting.

atoi() function:

atoi() function is a C library function which is used to convert a string of digits to the integer value.

char st[10] = “”24175”” ;

int n;

n = atoi(st);

This will assign the integer value 24175 to the integer variable n.

Additional String Handling Functions:

 (i) strupr(): to convert all alphabets in a string to upper case letters.

Ex: strupr(“delhi”) = “ DELHI”

74

(ii) strlwr(): To convert all alphabets in a string to lower case letters.

Ex: strlwr(“CITY” ”) = “city”

(iii) strrev(): To reverse a string

Ex: strrev(“SACHIN”) = “NIHCAS”

(iv) strncmp(): To compare first n characters of two strings.

x: m = strncmp(DELHI , DIDAR . 2); m = -4

(v) strcmpi(): To compare two strings with case in sensitive (neglecting upper / lower case)

Ex: m=strcmpi(“DELHI ”, “delhi ”); m = 0.

(vi) strncat(): To join specific number of letters to another string.

Ex. char s1[10] = “New”; char s2[10] = “Delhi -41”; strncat(s1,s2,3); s1 will be “

NewDel”.

 PROGRAMS USING DECISION MAKING STATEMENTS, ARRAYS AND STRINGS

DECISION MAKING AND LOOPING

1. Find the output of the following program:

main()

{

int i ;

printf ("Enter value of i ") ;

scanf ("%d", &i) ;

if (i = 5)

printf ("You entered 5") ;

else

printf ("You entered something other than 5") }

Output : (Here is the output of two runs of the above program)..

Enter value of i 200

You entered 5

Enter value of i 9999

You entered 5

We have used the assignment operator = instead of the relational operator ==. As a result, the
condition gets reduced to if (5), irrespective of the value of i. And remember that in C ‘truth’ is
always nonzero, whereas ‘falsity’ is always zero. Therefore, if (5) always evaluates to true and
hence the result.

2. Write a C Program that inputs an integer and determine whether it is evenly
divisible by 5 and 7.

void main()

{

int number;

75

printf(“Enter the number:”);

scanf(“%d”,&number);

if((number%5==0) &&(number %7==0))

 printf(“The number is evenly divisible by 5 and 7”);

else

 printf(“The number is not evenly divisible by 5 and 7”);

}

3. In a Company an employee is paid as under: if his basic salary is less than Rs. 1500,

then HRA = 10% of basic salary and DA = 90% of basic salary. If his salary is either

equal to or above Rs. 1500, then HRA = Rs. 500 and DA = 98% of basic salary. If the

employee's salary is input through the keyboard write a program to find his gross

salary.

/* Calculation of gross salary */

void main()

{

float bs, gs, da, hra ;

printf ("Enter basic salary ") ;

scanf ("%f", &bs) ;

if (bs < 1500)

{ hra = bs * 10 / 100.0 ;

da = bs * 90 / 100.0 ;}

else

{hra = 500 ;

da = bs * 98 / 100.- ;}

gs = bs + hra + da ;

printf ("gross salary = Rs. %f", gs) ;

}

4. Write a C program to determine the factorial of a given number.

void main()

{

int number,fact=1,i;

printf(“Enter the number:”);

scanf(“%d”,number);

for(i=1;i<=number;i++)

 fact*=i;

printf(“\n The factorial of given number is:%d”,fact);

}

5. Input three positive integers representing the sides of a triangle and determine

whether they form a triangle. For a triangle, the sum of any two sides must be

greater than the third side.

#include<stdio.h>

main()

76

{

int x,y,z;

clrscr();

printf(“Enter the value for x ,y z:”);

scanf(“%d%d%d”,&x&y&z);

if((x+y>z)&&(y+z>x)&&(x+z>y))

 printf(“\n\n They form a triangle”);

else

 pritnf(“They does not form a triangle”);

}

6. Write a program to solve the given quadratic equation ax^2+bx+c=0

void main()

{

float a,b,c,d;

double x1,x2;

printf(“Enter the values of a,b and c \n”);

scanf(“%f %f %f”,&a&b &c));

d=b*b-4*a*c;

if(d>0)

 { printf(“roots are real and different”);

 x1=(-b+sqrt(d))/(2*a);

 x2=(-b-sqrt(d))/(2*a);

 }

else if(d==0)

 { printf(“roots are real and equal”);

 x1=-b/(2*a);

 x2=x1;

 }

else

 printf(“roots are real and imaginary”);

printf(“\n x1=%.2f”,x1);

printf(\nx2=%.2f”,x2);

}

7. Write a program to find the power of some number.

void main ()

{

float x, power=1.0;

int n;

printf (" Type a number \n");

scanf ("% f",&x);

printf (" Raise this number to\n");

scanf ("%d", &n);

77

for(i=1; i<=n; i+ +)

{

power= power*x;

}

printf ("% f Raised to %d is % f", x,n,power);

}

8. Using for loop, write a C program to find the sum of first 50 natural numbers.

void main()

{

int i,sum=0;

for(i=1;i<=50;i++)

 sum = sum + i;

printf(“The sum is:%d”,sum);

}

9. Write a program in C, which finds and prints all the division of a given number.

void main()

{

int number, i;

printf(“”enter the number to find divisors:”);

scanf(“%d”,number);

printf(“\nThe divisors of given number is:”);

for(i=1;i<number;i++)

 { if(number%i==0)

 printf(“%4d”,i); }

}

10. Write a C program to convert the given binary number into decimal number.

void main()

{

long binary;

int dec=0, i=0;

printf ("\n Enter a binary No\n");

scanf ("%d", &binary);

while(binary>0)

{

dec + =(binary% 10)*pow(2,i++);

binary/=10;

}

printf (" Equivalent decimal number is %d", dec);

}

78

11. Using ASCII table, write a C Program that prints the following output using nested
for loop.

A

A B

A B C

…….

void main()

{

int i,j;

for(i=0;i<26;i++)

 {

 for{j=65;j<=65+i;j++)

 { printf(“%c”, j); }

 printf(\n”);

 }

}

12. Write a C program that prints out the even numbers 2,4,…..20 using for ..loop.

void main()

{ int i;

clrscr();

printf(“Even number:”);

for(i=2;i<=20;i+=2)

printf(“%d”,i); }

13. Write a program to print the triangle of the following format.

1

1 2

1 2 3

…………….

void main ()

{

int i, n, j ;

printf ("Type a number \n");

scanf ("%d", &n);

for (i=1 ; i<n ; i+ +){

for (j=1 ; j<=i ; j+ +)

{

printf ("%3d", j);

}

printf ("\n");

}

79

14. Write a C program to print all the Armstrong numbers between 1 and 500 , An
Armstrong number is a number that is the sum of cubes of each of its digits is equal
to the number itself.

void main()

{

int i,num,sum,r;

printf(“the Armstrong numbers between 1 and 500:\n\n”);

for(i=1;i<=500;i++)

{

 sum=0;num=i;

 do

 {

 r=num%10;

 sum = um+(r*r*r);

 num=num/10;

 } while (num!=0);

 if(sum==i)

 printf(“%d”,i);

}}

15. Write a C Program to accept 10 integers from the keyboard and to display their
sum and average using while loop.

main()

[

int number[10],sum=0,i=0;

float average;

 while(i<10)

 {

 printf(“enter the % d number:”i+1);

 scanf(“%d”,&number);

 sum+=number;

 i++

 }

average =sum/10.0;

printf(“\n\n The sum of 10 integers:%d”,sum);

printf(“\nThe average of 10 integers:%2f”, average);

}

16. Write a menu driven program to find perimeter of rectangle, circle, square,
 triangle

void main();

{

float l, b, r, side;

int x,y,z,c;

printf(" 1 for rectangle");

80

printf(" 2 for circle");

printf(" 3 for square");

printf(" 4 for triangle");

scanf("%d ", &c);

switch(c)

{

case 1: scanf(“%f%f”, &l &b);

 printf(“%f ”, l * b);

 break;

case 2: scanf(“%f”, &r);

 printf(“%f ”,3.14 * r * r);

 break;

case 3: scanf(“%f”, &side);

 printf(“%f ”, 4 * side);

 break;

case 4: scanf(“%f%f%f”, &x &y &z);

 printf(“%f ”, (x + y + z)/2);

 break;

}

}

17. Write a program to count all prime numbers that lie between 100 to 200. [Note: A

 prime number is positive integer that is divisible only by 1 or by itself]

void main()

{

int i,j,count;

count=0;

clrscr();

printf("\n\nSeries of prime number from 100 to 200:\n");

for(i=100;i<=200;i++)

{

for(j=2;j<=i;j++)

{

if(i%j==0)

break;

}

if(i==j)

{

printf("%4d\n",i);

count+=1;

}}

printf("The countable number is: %d",count);

getch();

}

81

ARRAYS

18. Write an appropriate array definition for the following: define a two dimensional

array (3*4)of integers called n. Assign the following values to the array elements.

 10 12 14 16

 20 22 24 26

 30 32 34 36

 int n[3][4]={

 {10,12,14,16},

 {20,22,24,26},

 {30,32,34,36}

 };

19. Write a C Program to read a one-dimensional array “mark”of 10 elements. Print the

 above elements in reverse order.

#include<stdio.h>

main()

{

 int mark[10];

 clrscr();

 printf(“Enter the marks:\n”);

 for(i=0;i<5;i++)

 scanf(“%d”,&mark[5]);

 printf(“ The Original array is:\n”);

 for(i=0;i<5;i++)

 printf(“%d ”,&mark[i]);

 printf(“ The reverse order is:\n”);

 for(i=4;i>=0;i--)

 printff(“%d ”,mark[i]);

getch();

}

20. Write a C program to find the sum of square of elements on the diagonal of a square
 matrix of order 5.

#include<stdio.h>

#define MAX 5

main()

{

 int mat[Max][MAX],i,j,sum=0;

 clrscr();

 printf(“enter the matrics elements:\n”);

 for(i=0;i<MAX;i++)

 for(j=0;j<MAX;j++)

82

 {

 printf(“enter the number:”);

 scanf(“%d”,&mat[i][j]);

 }

 for(i=0;i<MAX;i++)

 sum+=mat[i][i];

 printf(“The sum of diagonal element are:%d”,sum);

 getch();

}

21. Write a program to find the average of 10 real numbers in an array.

#include<stdio.h>

#include<math.h>

void main()

{

int i=0;

float sum,avg,num;

sum=0;

while(i<10)

{

scanf("%f",&num);

sum=sum+num;

i++;

}

avg=sum/10;

printf("Sum=%f\n",sum);

printf("Average=%f\n",avg);

}

22. Write a C program to find if a number is present in a list of N numbers or not.

#include<stdio.h>

#include<conio.h>

void main()

{

int i,n,m,flag=0; int a[10]; clrscr();

printf("how many elements u want to enter");

scanf("%d",&n);

printf("enter element in the array");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("enter the element u want to search");

scanf("%d",&m);

for(i=0;i<n;i++)

{

83

if(a[i]==m)

{

flag=1;

break;

}}

if(flag==0)

printf("not present");

else

printf("present");

getch();}

23. Write a program to print bytes reserved for various types of data and space required

for storing them in memory using array.

include<stdio.h>

main ()

{ int a[10]; char c[10];

float b[10];

printf(“the type „int‟ requires %d bytes”, sizeof(int));

pirntf(“ \n The type „char‟ requires %d bytes”, sizeof(char));

printf(“ \n The type „float‟ requires %d bytes”, sizeof(float));

printf(“ \n %d memory locations are reserved for ten „int‟ elements”, sizeof(a));

printf (“ \n %d memory locations are reserved for ten „char‟ elements”,sizeof(c));

printf (“ \n %d memory locations are reserved for ten „float‟ elements”,sizeof(b)); }

Output:

The type „int‟ requires 2 bytes

The type „char‟ requires 1 bytes

The type „float‟ requires 4 bytes

20 memory locations are reserved for ten „int‟ elements

10 memory locations are reserved for ten „char‟ elements

40 memory locations are reserved for ten „float‟ elements.

24. Write a program using a single subscripted variable to read and display the array
 elements.

include<stdio.h>

include<conio.h>

main()

{ int i ;

float x[10];

printf(“Enter 10 real numbers: \n”);

for (i=0; i <10; i++)

{ scanf(“ %f ”, &x[i]); }

printf(“The array elements are:”);

for(i=0; i < 10; i++)

{ printf(“%d \t”, x[i]); }

getch();

}

84

25. Program to find out the largest and smallest element in an array.

include<stdio.h>

#include<conio.h>

main()

{ int i,n;

float a[50], large, small;

printf(“size of vector/value:”);

scanf(“%d”, &n);

printf(“ \n vector elements are \n”);

for(i=0; i<n; i++)

scanf(“ %f ”, &a[i]);

large = a[0];

small = a[0];

for(i=1; i<n; i++)

{ if(a[i] > large)

large = a[i];

else

 if(a[i] < small)

small = a[i]; }

printf(“\n Largest element in vector is %8.2f \n”, large);

printf(“ \n smallest element in vector is %8.2f \n”, small);

getch();

}

26. Program to sort the vector elements in ascending order.

include<stdio.h>
include<conio.h>
main()
{ int i,j,k,n;
float a[50], temp;
printf(“size of vector:”);
scanf(“%d”, &n):
printf(“ \n vector elements are : \n”);
for(i=0; i < n; i++)
scanf(“ %f ”, &a[i]);
for(i=0; i < n-1; i++)
for(j=i+1;j<n; j++)
{

if(a[i] > a[j])

{

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

}

printf(“\n vector elements in ascending order : \n”);

85

for(i=0; i<n; i++)

printf(“ %8.2f ”, a[i]);

getch();

}

27. Write a program to display the elements of two dimensional array.

include<stdio.h>

include<conio.h>

void main()

{

int i,j;

int a[3][3] = { { 1,2,3}, {4,5,6}, {7,8,9}};

printf(“elements of an array \n \n”);

for(i=0; i<3; i++)

{

for (j=0; j<3; j++)

printf (“%d\t”, a[i][j]);

}

printf(“\n”); } /* end of outer for loop */

} /* end of main() function */

28. Program to read the matrix of the order upto 10 x 10 elements and display the
 same in matrix form.

include<stdio.h>

include<conio.h>

void main()

{

int i, j, row, col, a[10][10];

printf(“\n Enter Matrix Order upto (10 x 10) A :”);

scanf(“ %d %d ”, &row, &col);

printf(“\n Enter Elements of matrix A: \n”);

for(i=0; i<row ; i++)

{

for(j=0; j<col; j++)

{ scanf(“%d”, &a[i][j]); } }

printf(“ \n The matrix is: \n”);

for(i=0; i<row; i++)

{ for(j=0; j<col; j++)

{ printf(“ %d ”, a[i][j]);

}

printf(“\n”); } }

29 . Program to perform addition & subtraction of two matrices, whose orders are
 upto 10 x 10.

include<stdio.h>

include<conio.h>

86

main()

{ int i,j,r1,c1, a[10][10], b[10][10];

clrscr();

printf(“Enter Order of Matrix A & B upto 10 x 10:”);

scanf(“%d %d”, &r1, &c1);

printf(“Enter Elements of Matrix of A: \n”);

for(i=0; i < r1; i++)

{ for(j=0; j<c1; j++)

scanf(“ %d ”, &a[i][j]); }

printf(“Enter Elements of Matrix of B: \ n”);

for(i=0; i < r1; i++)

{ for(j=0; j < c1; j++)

scanf(“ %d ”, &b[i][j]); }

printf(“\n Matrix Addition \n”);

for(i=0; i < r1; i++)

{ for(j=0; j < c1; j++)

printf(“%d\t”, a[i][j] + b[i][j]);

printf (“ \n”); }

printf(“n Matrix Subtraction/Difference \n”);

for(i=0; i < r1; i++)

{ for(j=0; j < c1; j++)

printf(“%d\t”, a[i][j] – b[i][j]);

printf(“\n”); }

getch(); }

30. Write a C program to multiply A matrix of order mxn with B matrix of order nxl.

include<stdio.h>

include<conio.h>

include<math.h>

main()

{ int a[10][10], b[10][10], c[10][10], m , n , i , j , l , k ;

clrscr() ;

printf(“ \n Enter Order of A matrix :”);

scanf(“%d %d”, &m, &n);

/* loop to read values of A matrix */

printf(“Enter a matrix \n”);

for(i=0; i<m; i++)

for (j=0; j<n; j++)

scanf(“%d”, &a[i][j]);

printf(“\n Enter order of B matrix:”);

scanf(„%d %d”, &n, &l);

/* loop to read values of B matrix */

printf(“Enter B matrix \n”);

for(i=0; i<n; i++)

for (j=0; j<l; j++)

scanf(“%d”, &b[i][j]);

for(i=0; i<m; i++)

87

{ for (j=0; j<l; j++)

{ c[i][j] = 0;

for(k=0; k < n; k++)

c[i][j] = c[i][j] +a[i][k] * b[k][j]; } }

printf(“ \n Resultant matrix is \n”);

for(i=0; i<m; i++)

{ for(j=0; j<l; j++)

printf(“%6d”, c[i][j]);

printf(“ \n ”); }

getch () ;

}
STRINGS

31. Write a program to find the length of a string without using string function

main()

{

 char str[50];

 int len=0,i=0;

 printf(“\n Enter the string:”);

 gets(str);

 while(str[i])

 {

 len++;

 i++;

 }

 printf(“\n The length of the given string is : %d”,len);

}

32. Write a ‘C’ program using conditional operator to print whether the character
 entered through the keyboard is a lower case letter or not.

#include<stdio.h>

#include<string.h>

main()

{

 int lower;

 char ch;

printf(“Enter a character:”);

ch=getchar();

lower=ch>=’a’ && ch<=’z’ ? 1:0;

if(lower)

 printf(“\n\nThe given letter is a lowercase letter:”);

else

 printf(“\n\nThe given letter is not a lowercase letter:”);

}

88

33. Write a program to find the no of words in a given sentence.

#include<stdio.h>

main()

{

 char str[50];

 int word=1,i;

 clrscr();

 printf(“\n Enter the sentence:”);

 gets(str);

 for(i=0;i<strlen(str);i++)

 if((str[i]= = ‘ ‘))

 ++word;

 printf(“\n\n The no.of words in given sentence is: %d”,word);

 }

34. Write a ‘C’ program to arrange a list of names in alphabetical order.

#include<stdio.h>

#include<conio.h>

main()

{

 char Names[20][30],Temp[30];

 int i,n;

printf(“\n How many names:?”)

scanf(“%d”,&n);

fflush(stdin);

for(i=0;i<n;i++)

{

 printf(“\n Enter the %d person name:”,i+1);

 gets(Names[i]); /*Get the names */

}

for(i=0;i<n-1;i++)

 for(j=i+1;;j<n;j++)

 {

 if(strcmp(Names[i],Names[j])>0)

 {

 strcpy(Temp,Names[i]);

 strcpy(Names[i],Names[j]);

 strcpy(Names[j],Temp);

 }

 }

 for(i=0;i<n;i++)

 printf(“\n The %d Person Name :%s”,i+1,Names[i]);

}

89

35. Write a program to concatenate two strings without using string functions.

#include<stdio.h>

main()

{

 char str1[50],str2[25];

 int i,j;

 clrscr();

 printf(“Enter the first string:”);

 gets(str1);

 printf(“\n Enter the second string:”);

 gets(str2);

 j=strlen(str1);

 for(i=0;i<strlen(str2);i++,j++)

 str1[j]=str2[i];

 str1[j]=NULL;

 printf(“\n The concatenated string is: %s”,str1);

 getch();

}

36. Write a ‘C’ program to accept 15 characters from the key-board. Check whether

they are valid lowercase alphabets and if so, convert them and display them as
uppercase alphabets. If entry is other than lowercase, the character entered
should be skipped and not displayed.

#include<stdio.h>

main()

{

 char str[15];

 int i;

 printf(“Enter the string”);

 gets(str) ;

 printf(“\n\nThe output string is:”);

 for(i=0;i<15;i++)

 if((str[]>=’a’) && (str[i]<=’z’))

 printf(“%c”,str[i]-32);

}

37. Write a program to accept a string of six characters from the keyboard

a. Construct a new string with a blank space in between each character.

b. Output the original string in the reverse order.

#include<stdio.h>

#include<conio.h>

main()

{

 char str[10],newstr[15];

90

int i,j=0;

clrscr();

printf(“\n Enter the string:”);

for(i=0;i<6;i++)

 str[i]=getchar();

str[i]=NULL;

for(i=0;i<6;i++,j+=2)

{

 newstr[j]=str[i];

 newstr[j+1]=’’;

}

newstr[j]=NULL;

printf(“\n\n The new string is : %s”,newstr);

printf(“\n\n The reverse of original string is;”);

for(i=strlen(str)-1;i>=0;i--)

 printf(“%c”,str[i]);}

38. Given the string “DATA PROCESSING”, write a C program to read the string from

terminal and display the same in the following formats.

(i) DATA PROCESSING

(ii) DATA

PROCESSING

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

char a[50];

clrscr();

printf("enter the string");

gets(a);

puts(a);

i=0;

while(a[i]!=' ')

{

printf("%c",a[i]);

i++;

}

i++;

printf("\n");

while(a[i]!='\0')

{

printf("%c",a[i]);

i++;

}

getch();

}

91

39. Write a C program that reads a fixed point real number in a character array and then

 displays rightmost digit of the integral part of number.

void main()

{

char a[10];

int i;

printf("enter a fixed point real no. : ");

scanf("%s",a);

i=0;

while(a[i]!='.')

i++;

printf("%c",a[--i]);

}

40. Write a program to display character array with their address.

void main()

{ char name[10] = {“A”, “R”, “R”, “A”, “Y”};

int i = 0;

printf(“ \n character memory location \n‟);

while(name[i] ! = “\0‟)

{ printf(“ \n [%c] \t [%u]”, name[i], &name[i]); i++; }

}

Output:

Character Memory Location

[A] 4054

[R] 4055

[R] 4056

[A] 4057

 [Y] 4058

41. Write a C program to count the occurrence of a particular character in the given
 string.

void main()

{

char st[20], ch; int count, l,i;

printf(“ \n Enter the string:”);

gets(st);

printf(“ \n which char to be counted ?”);

scanf(“ %c”, &ch); /

l = strlen(st);

count = 0;

for(i=0; i < l; i++)

if(st[i] = = ch) count ++;

printf(“ \n the character %c occurs %d times”, ch, count);

 }

92

 SUMMARY

• Control statements are used to specify the order in which the various instructions in a program

are to be executed.

• Control statements are classified into (i) Conditional statements (ii) Looping statements

(iii)Unconditional statements

• Examples for Conditional statements are: If statement If – else statements ,Nested if – else

statements , Switch statement

• Examples for looping statements (i) While loop (ii)Do – while loop (iii) For loop.

• Examples for Unconditional statements (i) Break statements (ii) Continue statements

(iii) goto statements

• The simple if statement will execute a single statement, or a group of statements, if the

condition lis true. If the condition is false, it does nothing.

• If …else statement is used to execute one group of statements if the condition is true. The

other group of statements are executed when the condition is false.

• A nested if statement is an if statement which is within another if – block or else – block.

• Looping statements are used to execute a group of instructions repeatedly until some

condition is satisfied.

• The minimum number of times the body of a do… while loop is executed is one.

• A while loop performs its test before the body of the loop is executed, whereas a
do..loop makes the test after the body is executed.

• The switch statement is used to pickup or executes a particular group of statements.
It allows us to make a decision from the number of choices.

• The four keywords associate with switch statement are: (i) switch (ii) case (iii) default
and (iv) break.

• The break terminates the loop. The continue branches immediately to the test portion
of the loop.

• A loop with no terminating condition is called an infinite loop.

• The type of loops, where the number of the execution is known in advance are termed
by the counter controlled loop.

• The type of loop where the number of execution of the loop is unknown, is termed by
sentinel controlled loop.

• The goto statement is used to transfer the statements execution from one place to
another.

• A switch statement is generally best to use when you have more than two conditional
expressions based on a single variable of numeric type.

• A statement is a single C expression terminated with a semicolon. A block is a series
of statements, the group of which is enclosed in curly-braces.

• The break statement unconditionally ends the execution of the smallest enclosing
while, do, for or switch statement.

• Array is an ordered collection of elements that share the same name.

• The elements of the array are known as members of the array

• The dimension of an array is determined by the number of subscripts needed to
identify each element.

93

• The one-dimensional array is also called as list.

• The subscript of the first element of an array in ‘C’ is zero.

• One dimensional array has a single subscript. But two dimensional arrays have two
subscripts. The two dimensional array is called a matrix or table.

• Arrays can be classified into: (i) One-Dimensional arrays (ii)Two-Dimensional arrays
and (iii) Multi-Dimensional arrays.

• An array of three or more dimension is called as multidimensional array.

• Any group of characters enclosed in double quotes is a string constant. It is terminated
by a null character (\0)

• In ‘C’ language a string is defined by using the character array.

• When declaring character arrays, always allow one extra element space for the null

character.

• There are two ways to read a string from the terminal. They are (1) by using the scanf
function and (2) by using gets function.

• The disadvantage of scanf function is that there is no way to enter a multi-word string
into a single variable.

• A group of characters defined between double quotation marks is called as a string
constant

• Whenever a string is stored in memory, the NULL character (‘\0’) is automatically
added to its end

• The most commonly used string-handling functions are strcat(), strlen(), strcmp,
strcpy().

• The strcat() function is used to join two strings.

• strcmp() function compares two strings character by character(ASCII comparisons)
and returns a value. Value may be less than 0, or equal to 0, or greater than 0.

• strcpy () copies the second string to the first string specified in the strcpy ()
parameter.

• strlen() function is used to find the number of characters in string.

94

 REVIEW QUESTIONS / PROGRAMS

PART – A (2 Marks)

1. What do you mean by control statements in C?

2. How the control statements are classified?

3. What is the purpose of the comma operator? Within which control statement does
the comma operator usually appear?

4. Write down the syntax of if-else statement.

5. What is meant by looping? Give an example.

6. Write an infinite loop in C language , which does not use any variable or constant/

7. What is nested loops ? Give an example.

8. State the difference between Counter controlled loop and sentinel controlled loop?

9. In a control structure switch-case, explain the purpose of using default.

10. What are the four keywords used in switch structure?

11. In what way does an array differ from an ordinary variable?

12. How are individual array elements identified?

13. What is an array? Can array index be negative?

14. What condition must be satisfied by the entire elements of any given array?

15. How a string is stored in C?

16. State the difference between character constant and string constant.

17. What is null character? State the use of null character.

18. What is the difference between a, ‘’a’’ and “”a””

19. How do we read string including blank space?

20. State any four string manipulating functions.

21. Give the general structure of (i) strlen() (ii)strcmp() functions

PART – B (3 Marks)

 1. Explain the forward and backward jump with necessary example.

 2. What is the purpose of switch statement? What labels, i.e., case prefixes? What type
of expression must be used to represent a case label?

 3. What is time delay loop ? How you will form time delay loop?

 4. In any program, using switch statement, if all break statements are removed from all
cases of switch statement, how does it affect the functionality of switch statement?
Give example.

 5. What are subscripts? How are they written? What restrictions apply to the values
that can be assigned to subscripts?

 6. What is the difference between scanf() with % s and gets()?

 7. What is the difference between character array and string?

 8. Write a C Program that will capitalize all the letters of a string.

 9. Write a C program to read a word and rewrite it in reverse order.

 10. Write a program to find the largest number between given three numbers

95

PART – C (5 Marks / 10 Marks)

1. Describe the different forms of the if statement. How do they differ? Give examples.

1. Explain unconditional control statements with examples.

2. Draw the flow chart and syntax of else-if ladder.

3. Distinguish between Break and continue statement.

4. Write down the differences between do…while and while loop? Explain with an example.

5. Explain the general syntax of a switch statement and with simple example. Explain its use in
programming.

6. What is the purpose of while-loop , do-while loop and for loop ? How these are executed?
Summarize the rules associated with these structures.

7. What is the purpose of “continue” statement? Within which control structures can the “
continue” statement be included? Compare it with the “break “ statement.

8. Explain (i) Entry controlled looping statement and (ii) exit controlled statement?

9. What are the different form of for loop ? Explain.

10. Write a program to find the factorial of a given number using the for loop.

11. Read a list of 10 numbers and print it in reverse order.

12. Read a 3 x 3 matrix and find their sum.

13. How can a list of strings be stored within a two dimensional array? How can individual
stringsbe processed? What library functions are available to simplify the string processing?

14. Write a C program to print the quotient of an integer number without using ‘/’.

15. Write a C program to print all the even and odd numbers of a certain range as indicated by
the user.

16. Illustrate the initialization of one dimensional arrays , two dimensional arrays and strings.

17. Take input from the user in a two-dimensional array and print the row-wise and column-wise
sum of numbers stored in a two-dimensional array.

18. Swap the kth and (k+1) th elements in an integer array, k is given by the user.

19. What are the functions used for reading and writing strings? Explain them.

20. Write in detail about the following string handling functions: (i) strcat() (ii) strcpy() (iii)
strlen() (iv)strcmp

21. Write a program to count number of characters, words and lines in a given text.

22. Write a program to count number of vowels, consonants and blanks in a given text.

23. Write a program to check whether a give string is palindrome or not.

24. Write a C program that takes an organization name as input and print it in abbreviation from.
For example if the input is “ Bharath Heavy Electricals Limited “, the the output should be
BJEL.

25. Write a C program to find the Fibonacci series upto 200.

26. Write a C program to arrange the given N numbers in ascending order.

27. Write a C program to accept a month number and display the month name.

28. Write a program to delete an element from an array.

96

UNIT – III

FUNCTIONS , STRUCTURES AND UNIONS IONS

 OBJECTIVES

 After reading this unit, the student will be able to

• Understand what a function is and how its use benefits a program

• Classify functions

• Learn how a function declaration, function call and function definition are constructed.

• Understand how arrays and functions are passed to function

• Classify different types of user defined functions.

• Understand what scope rules mean in functions,

• Learn about scope and lifetime of different types of variables.

• Understand the basic concept of recursion.

• Learn the techniques of constructing recursive function.

• Understand the basic concept of structures.

• Access, Initialize and copy structures and their members

• Understand nesting of structures

• Learn about union data type.

• Differentiate structures from union

INTRODUCTION

A function is a self-contained block of program statements that perform a particular task. Every C
program is a collection of functions. A large single list of instructions becomes difficult to understand,
debug, test and maintain. For this reason, functions are used. The function code is stored in only one
place in memory, even though it may be executed as many times as a user needs thus saving both
time and space.

A structure is a derived data type. Structure is a collection of mixed data types referred by a single
name. Closely associated with the structure is the Union, which also contains multiple members.
Unlike a structure, the members of a union share the same storage area.

In this unit, we will discuss about the concepts of functions, structures and unions.

3.0. FUNCTIONS - DEFINITION

A function in C is a small “sub-program” that performs a particular task. C, functions can be classified

into two categories, namely, (i)Library functions or Built in functions or Pre-defined functions and

(ii) User-defined functions.

Pre-defined functions are already written by compiler developers. Pre-defined functions are not

written by the programmer. Pre-defined functions are commonly used in all the programs. These

functions are grouped together and stored in a library.

Programmer defined functions can be written by the programmer at the time of writing a program.

97

3.1. BUILT -IN - FUNCTIONS

C contains number of library functions. These functions are also known as built-in functions. The

related library functions are grouped together and stored in a header file. Some of the library functions

are shown below

Header file Library function Header file Library function

stdio.h gets, puts, getchar, putchar,
scanf, printf

ctype.h tolower, toupper,isalpha,
isdigit

string.h strcat, strlen, strcmp, strcpy Stdio.h printf(), scanf(), getc, gets,
putc,putc

math.h sin, cos, pow, ceil, floor math.h

 3.1.1. Math Functions

sin(sine) : This function is used to find the sine value. The value for sine must be in radians. This

function returns a value in the range -1 to 1.

Syntax: double sine(double x);

cos(cosine) : This function is used to find the cosine value. The value for cosine must be in radians.

This function returns a value in the range -1 to 1.

Syntax: double cos(double x);

tan(tangent) : This function is used to find the tangent of a value. The value for tangent must be in

radians. This function returns a value in the range -1 to 1.

Syntax: double tan(double x);

ceil (roundsup): Ceil function returns the smallest integer greater than or equal to the given value

Syntax: double ceil(double x);

floor (roundsdown) : floor function returns the largest integer less than or equal to the given value.

 Syntax: double floor(double x);

Some example:

x Floor Ceiling

-1.1 -2 -1

0 0 0

1.01 1 2

2.9 2 3

3 3 3

98

exp(Exponent) : Exp function calculates ‘e’ to power of xth power.

Syntax: double exp(double x);

abs(absolute): This function is used to find the absolute value of an integer.

Syntax: int abs(int x);

pow(power) : This function is used to find the power of any value(x) to any value (y). (i.e.xy)

Syntax: double pow(double x,double y);

Example : pow(5,2) = 25

sqrt(square root) : This function is used to find the square root of any number.

Syntax: double sqrt(double x);

Examples by using functions in math.h header file

void main ()

{ double Degree, Radian;

double w,x,y,z;

double pi = 22.0 / 7.0;

printf (“\nEnter the angle in degrees:”);

scanf (“%f”, &Degree);

Radian = (pi / 180.0* Degree);

x = sin(Radian);

y = cos(Radian);

z = tan(Radian);

w = exp(x);

printf (“\nSin(%f)=%f\nCos(%f)=%f\n Tan (%f)=%f\nExp(%f)=%f”,

 Degree, x, Degree, y, Degree, z,x,w);

}

Output

Sin(48.250000)= 0.746283

Cos((48.250000f)=0.665629

Tan ((48.250000)=1.121170

Exp(0.746283)=2.109146

99

 3.1.2. Console functions

The screen and keyboard together are called a console. Console I/O functions can be further classified

into two categories—formatted and unformatted console I/O functions. The basic difference between

them is that the formatted functions allow the input read from the keyboard or the output displayed

on the VDU to be formatted as per our requirements. For example, if values of average marks and

percentage marks are to be displayed on the screen, then the details like where this output would

appear on the screen, how many spaces would be present between the two values, the number of

places after the decimal points, etc. can be controlled using formatted functions.

Unformatted console I/O functions work faster since they do not have the overheads of formatting

the input or output.

 3.1.3. Character functions

The library functions contained in the header file ctype.h are called as Character Class Test Functions.

These functions are used to find the type of the character and used for character conversion. Some of

the functions available in the above header file are described below:

isdigit(x) : This function is used to check whether a given character is a digit or not. This function

returns a non-zero integer for true and zero for false.

Syntax : int isdigit(int x);

isalpha(x) : This function is used to check whether a given character is a letter or not. This function

returns a non-zero integer for true and zero for false.

 Syntax : int isalpha(int x);

100

islower(x) : This function is used to check whether a given character is a lowercase or not. This

function returns a non-zero integer for true and zero for false.

 Syntax : int islower(int x);

isupper(x): This function is used to check whether a given character is a uppercase or not. This function

returns a non-zero integer for true and zero for false.

 Syntax: int isupper(int x);

ispunct(x) : This function is used to check whether a given character is a punctuation character or not.

This function returns a non-zero integer for true and zero for false.

 Syntax : int ispunct(int x);

tolower() : Converts character to lowercase

toupper() : Converts character to uppercase

islower() and tolower(): islower(c) determines if the passed argument is lowercase. It returns a

nonzero value if true otherwise 0. tolower () is a conversion function , that convert argument c to

lowercase

Example

main()

{

char v = ‘A’;

char w = ‘6’;

char x = ‘q’;

char y = ‘Q’

clrscr();

if(isalpha(v)) printf(“\n%c is an alphabet”,v);

if(isdigit(w)) printf(“\n%c is a digit”,w);

if(islower(x)) printf(“\n%c is a lowercase character”,x);

 if(isupper(z)) printf(“\n%c is a uppercase character”,Q);}

OUTPUT

A is an alphabet

6 is a digit

q is a lowercase character

Q is a uppercase character

3.2. USER DEFINED FUNCTIONS

 3.2.1. Introduction about functions

A function is a self-contained program segment that performs a particular task. A large program has to

be split into smaller segments so that it can be efficiently solved. Functions are smaller segments,

which are used to solve the large problem.

101

 3.2.2. Reasons for using the functions

1. A function avoids the need for writing repeated codes having same statements. The
length of a source program can be reduced by using functions at appropriate places.

2. Functions are easier to write, debug and understand. Simple function can be written to

perform unique specific task. Programs containing the functions are also easier to maintain.

Functions are also put in a library and later used by many programs.

3. Understanding the flow of program and its code is easy, since the readability is
enhanced while using the functions.

4. A single function written in a program can also be used by other programs.

5. Make program self-documenting and readable.

 3.2.3. Elements of user defined functions

The following are the three elements of user defined function

1. Function definition 2. Function call

3. Function declaration

The function definition is an independent program module that is specially written to implement to

the requirements of the function. Function call is used to invoke it at a required place in the program.

The program or a function that has called a function is referred to as the calling function or calling

program. The calling program should declare any function that is to be used later in the program. This

is known as the function declaration

 3.2.4. Function definition

A function definition, also known as function implementation shall include the following elements

1. Function name

2. Data type

3. List of parameters (Argument list(s))

4. Local variable declarations

5. Function statements

6. A return statement

All the six elements are grouped into two parts; namely, (i) Function Header (First three elements)

and (ii) Function Body (Second three elements)

The function definition is the actual body of the function. The general form of a function is

[data type] function name (argument list)

{

 local variable declarations;

 statements;

 [return expression]

}

102

Function Header :

The function header consists of three parts; function type, function name and list of parameter.

(a) Data Type : The function type specifies the type of value (like float or double) that the function is

expected to return to the calling program. If the return type is not explicitly specified, C will assume

that it is an integer type.

(b) Function name : The function name is any valid C identifier and therefore must follow the same

rules of formation as other variable names in C. The name should be appropriate to the task performed

by the function.

(c) List of Parameter : The parameter list declares the variables that will receive the data sent by the

calling program. They serve as input data to the function to carry out the specified task.

Example : (i) float mul (float x, float y) (ii) int sum (int a, int b)

Function body :

The function body is enclosed in braces, contains three parts, in the order given below:

1. Local variable declaration : Local variable declarations are statements that specify the
variables needed by the function.

2. Function Statements : Function statements are statements that perform the task of the
function.

3. Return Statements : A return statement is a statement that returns the value evaluated by
the function to the calling program. If a function does not return any value, one can omit the
return statement.

Arguments appearing in the parentheses of function header are called as formal parameters or formal

arguments or dummy arguments. The body of the function may consist of many statements.

Example

int sum (int a, int b)

{

int c;

c = a+b;

return c;

}

The above is the function definition for the function “sum”. The function takes up two integers namely

“a” and “b”. They are called as dummy parameters. The function returns an integer value. Some

functions will not actually return a value or need any arguments. For these functions the keyword void

is used.

 3.2.5. Return Statement

Information is returned from the function to the calling program through a return statement. Return

statement has two purposes.

103

1. Executing of return statement immediately transfers control from the function to the calling

program

2. The value inside the parentheses of return statement is returned to the calling program.

The general formats of return statements are

• return;

• return (constant);

• return (expression);

• return (variable);

• return (condition expression);

The first statement does not return any value; it is just equal to the closing brace of the function.

Examples :

return(5); return(x*y); return (p); return(a>b?a:b)

1. A limitation of return statement is that it can return only one value

2. The return statement need not always be present at the end of the called function.

3. If the called function should not return any value, then the keyword void must be used as

data-type specifier.

4. It is possible for a function to have multiple return statements. For example:

Int large big(int a, int b)

{

if (a>b)

return a;

else

return b;

}

 3.2.6. Function Declaration (Function prototyping)

The program or a function that called a function is referred to as the calling function or calling program.

The calling program should declare any function that is to be used later in the program. This is known

as the function declaration. Whenever a function is called, before to that the called function should

be either declared or defined. Function declaration is the activity that is telling the compiler that a

function is defined somewhere below.

A function declaration consists of four parts. They are,

1. Function type

2. Function name

3. Parameter list

4. Terminating semicolon

Function declaration can be written as

Funtion_type function_name(parameter list);

where function type refers to the data-type of the data returned by the function, and name refers to

the function name. The declaration of a function is known as function prototype

104

If the function definition precedes all function calls, then it is not necessary to include a function

declaration within the calling portion of the program.

Example

main()

{ float square (float) ; /* function declaration stement */

float a, b ;

printf ("\nEnter any number ") ;

scanf ("%f", &a) ;

b = square (a) ;

printf ("\nSquare of %f is %f", a, b) ; }

float square (float x) {

float y ;

y = x * x ;

return (y) ;

}

Output:

Enter any number 1.5

Square of 1.5 is 2.250000

Enter any number 2.5

Square of 2.5 is 6.250000

Some points to keep in mind when calling functions

1. The number of arguments in the function call must match the number of arguments in the

function definition.

2. The type of the arguments in the function call must match the type of the arguments in the

function definition.

3. The actual arguments in the function call are matched up in-order with the dummy arguments

in the function definition.

4. The actual arguments are passed by-value to the function. The dummy arguments in the

function are initialized with the present values of the actual arguments.

5. Any changes made to the dummy argument in the function will NOT affect the actual

argument in the main program.

 3.2.7. Calling a function

A function can be called by specifying its name, followed by a list of arguments enclosed within

parentheses and separated by commas. The parenthesis is used to indicate the compiler that the

identifier is a function and not a variable. A function name used in the calling program is either a part

of a statement or a complete statement with a semi-colon. In function definition, semi-colon is not

placed at the end of header. The absence of semicolon indicates that the function is being defined

and not called. If the function call does not require any arguments, an empty pair of parentheses must

follow the function’s name.

Important points to be considered when calling a function

105

1. A semicolon is used at the end of the statement when a function is called.

2. Parentheses are compulsory after the function name.

 3.2.8. Function Call

Whenever a function uses the service of another function, then the former one is called as “calling

function” and the later one is called as “called function”. The process of invoking a function is referred

as “Calling a function”. During the function call, the execution of current function is temporarily

stopped and the control moves to the execution of the function called. While calling the function,

some values are provided within (). These values are called as actual parameters or actual arguments.

The above values are copied or assigned to the dummy parameters available in the function header

in order. The number of actual parameters should be equal to the number of dummy parameters and

their type should also be same.

After the control is moved to the called function, the execution of the called function starts. The

statements in the function are executed upto return statement. Finally the result is returned to the

calling function.

Example

main()

{

 int I;

 for (i=1; i<=10; i++)

 {

 j = square(i); /* function call */

 printf(“\nSquare of %d is %d”, I,j);

 }

}

square (int x)

{

 int y;

 y = x*x;

 return(y);

}

The above program is used to print the squares of 1 to 10. This is achieved by calling a function called

square. The result is passed from the called function.

 3.2.9. Types of functions

A function may belong to any one of the following categories:

1. Functions with no arguments and no return values.

2. Functions with no arguments and return values

3. Functions with arguments and no return values.

4. Functions with arguments and return values.

106

1. Functions with no arguments and no return values:

There is no data transfer between the calling function and the called function. When a function has

no arguments, it does not receive any data from the calling function. Similarly, when it does not return

value, the calling function does not receive any data from the called function.

A function that does not return any value cannot be used in an expression. It can be used only as

independent statement.

Example:

/* Program to illustrate a function with no argument and no return values*/
#include <stdio.h>
main()
{
statement1();
starline();
statement2();
starline();
}
statement1()
{
printf(“\n Sample subprogram output”);
}
statement2()
{
printf(“\n Sample subprogram output two”);
}
starline()
{
int a;
for (a=1;a<60;a++)
printf(“%c”,’*’);
printf(“\n”);
}

2. Functions with No arguments but return values:

When a function has no arguments, it does not receive any data from the calling function. When it

returns a value, the calling function receives the data from the called function.

http://www.exforsys.com/

107

Example:

#include <stdio.h>
float area()
{
int radius:
float area;
printf(“Enter Radius of the circle\n”);
scanf(“%d”,&r)
area = 3.14 *r * r:
return(area);
}
void main()

float ar;
ar = area();
printf(“ Area of the circle is %f”, ar);
}

3. Functions with arguments but no return values:

When a function has arguments, it receives data from the calling function. The calling function can read

data from the input terminal and pass it to the called function.

/*Program to find the largest of two numbers using function*/

#include <stdio.h>

main()

{

int a,b;

printf(“Enter the two numbers”);

scanf(“%d%d”,&a,&b);

largest(a,b) ;

}

/*Function to find the largest of two numbers*/

largest(int a, int b)

{

if(a>b)

printf(“Largest element=%d”,a);

else

printf(“Largest element=%d”,b);

}

In the above program we could make the calling function to read the data from the terminal and pass it

on to the called function. But function does not return any value.

108

4. Functions with arguments and return values:

The function of the type Arguments with return values will send arguments from the calling function to

the called function and expects the result to be returned back from the called function back to the calling

function.

Example:

main()

{

float x,y,add();

double sub();

x=12.345;

y=9.82;

printf(“%f\n” add(x,y));

printf(“%lf\n”sub(x,y);

}

float add(a,b)

float a,b;

{

return(a+b);

}

double sub(p,q)

double p,q;

{ return(p-q); }

Call by value

When the values are passed to a function via an actual argument, the value of the actual argument is

copied into the function. Therefore, the values of the corresponding formal arguments can be altered

within the function. But the values of the actual argument within the calling function will not change.

The procedure for passing the values of arguments to a function is known call by value.

Advantages of call by value

1. Expression can be passed as arguments.

2. Unwanted changes to variables in calling program can be avoided.

Disadvantages of call by value

1. Information cannot be passed back to calling function through arguments.

Example

main()

{

int a = 10, b = 20 ;

swap (a, b) ;

printf ("\na = %d b = %d", a, b) ;

}

swap (int x, int y)

109

{

int t ;

t = x ;

x = y ;

y = t ;

printf ("\nx = %d y = %d", x, y) ;

}
The output of the above program would be:

x = 20 y = 10
a = 10 b = 20

Note that values of a and b remain unchanged even after exchanging the values of x and y.

 3.2.11. The Scope and Life time of varaibles used in functions

STORAGE CLASSES

Every variable in C has two attributes: its data type and its storage class. The storage class refers to

the way memory is allocated for the variable. The storage class also determines the scope of the

variable, that is, what parts of a program the variable’s name has meaning. In C, the four possible

Storage classes are

– auto

– extern

– static

– register

The life time of a variable refers to the existence of a variable in memory. The four classes of a variable,

as classified by their scope and life time are

1. Automatic Variables

2. External variable

3. Static variable

4. Register variable.

Automatic variables

Automatic variables are declared inside a function. They are created as soon as a function starts

execution, and used within the function. At the end of the execution of the function, it is destroyed.

Here “created” means the memory is allotted to the variable and “destroyed” means the memory is

freed and released back to operating system.

Automatic variables are therefore local to the function and are not recognized outside the function.

So, automatic variables are also called as “local variable” or “internal variable”.

A keyword “auto” is sometimes used to specify automatic variable storage class. Automatic variables

are initialized by the programmer. They are recreated each time the function is called.

110

Example

/* A program to illustrate the working of auto variables*/

#include

void main()

{

int m=1000;

function2();

printf(“%d\n”,m);

}

function1()

{

int m=10;

printf(“%d\n”,m);

}

function2()

{

int m=100;

function1();

printf(“%d\n”,m);

}

Output

 10

 100

 1000

The output clearly shows that value assigned to m in one function does not affect its value in the other

function. The local value of m is destroyed when it leaves a function.

External variables

External variables are active throughout the program execution. They are also known as global

variables. External variables can be accessed by any function in the program. External variables are

declared outside a function. If a variable is declared at the beginning of a program outside all

functions [including main()] it is classified as an external by default.

External variables are useful when variables have to be shared among functions.

If a variable is declared as external variable, any function can use it and change its value. Subsequent

functions can reference only that new value.

Example

The following example illustrates the use of global variable.

int j ;

main()

{

printf ("\nj = %d", j) ;

increment() ;

increment() ;

111

decrement() ;

decrement() ;

}

increment()

{

j = j + 1 ;

printf ("\incrementing j = %d", i) ;

}

decrement()

{

j = j - 1 ;

printf ("\decrementing j = %d", i) ;

}

Output :

j = 0

incrementing j = 1

incrementing j = 2

decrementing j = 1

decrementing j = 0

The value of j is available to the functions increment() and decrement() since j has been declared

outside all functions.

Advantage of using global variables: It is a method of transmitting information between functions

in a program without using arguments.

Static variables

The value of the static variable persists until the end of the program. When variables are required to

retain their values from one execution to another execution of the function, they should be declared

with the keyword “static” before their type declaration.

Static variable will not lose their storage locations or their values when control leaves the functions or

blocks wherein they are defined. The initial value assigned to a static must be a constant or an

expression involving constants.

Static variables are automatically initialized to 0, by default during the first execution of the program.

However, the initialization does not make place during subsequent calls.

Example

main()

{

int j;

for(j=1;j<3;j++)

inc();

}

inc();

{

static int x=0;

x=x+1;

112

printf(“x=%d\n”,x);

}

Output : 1 2 3

During the first call to inc() in the example shown above , x is incremented to 1. because x is static,

this value persists and therefore the next call adds another 1 to x giving it a value of 2. The value of x

becomes 3 when third call is made. If we had declared x as an auto then output would here been x=1

all the three times.

REGISTER VARIABLES

Registers variables are placed in one of the machine registers, instead of using memory. Accessing

the register is very fast compared to memory. So frequently used variables are placed in register. This

will increase the execution speed. The general format to declare a variable as register variable is

register data_type variable_name

These variables are defined with the keyword “register”. Register variables should be having

maximum size of the computer register. Suppose if the register size is 4 byte means , it is not possible

to go for variables whose size is greater than 4 bytes. Thus char, int, long and float are possible types.

Double and long double are not possible for this storage type.

Example

main()

{register int count;

}

Register variables are used to speed up the program execution. It is error to refer the address of a

register variable.

COMPARISON OF STORAGE CLASSES IN C

a. Automatic storage class: The features of variables are as follows

• Storage: Memory

• Default initial value: Garbage value

• Scope: Local to the block in which defined

• Life: till the control remains within the block in which defined.

b. Register storage class: The features of variables are as follows

• Storage: CPU registers

• Default initial value: Garbage value

• Scope: Local to the block in which defined

• Life: till the control remains within the block in which defined

c. Static storage class: The features of variables are as follows

• Storage: Memory

• Default initial value: Zero

• Scope: Local to the block in which defined

• Life: value of variable persists between different function calls.

113

d. External storage class: The features of variables here are as follows

• Storage: Memory

• Default initial value: Zero

• Scope: global

• Life: As long as program execution does not come to an end.

 3.2.12. Recursion

Recursion is the process in which a function repeatedly calls itself to perform calculations. For

example consider the following:

main()

{

printf(“This is an example of recursion.\n”);

main(); }

When executed this program will produce an output which is something like this,

 This is an example of recursion.

This is an example of recursion.

Execution is terminated abruptly; otherwise the execution will continue indefinitely.

Recursion is a special case of function call where a function calls itself. These are very useful in the

situations where solution can be expressed in terms of successively applying same operation to the

subsets of the problem. For example, a recursive function to calculate factorial of a number n is given

below:

The following function calculates factorials recursively:

int fact(int n)

{

int factorial;

if(n==1||n==0)

return(1);

else

factorial=n*fact(n-1);

return (factorial);

}

Assume n=4, we call fact(4)

Since n is not equal to 1 0, factorial=n*fact(n-1)

Factorial=4*fact(3) (again call fact function with n=3)

=4*3*fact(2) (again call fact function with n=2)

=4*3*2*fact(1) (again call fact function with n=1)

=4*3*2*1 (terminating condition)

=24

Always have a terminating condition with a recursive function call otherwise function will never

return.

114

3.3.STRUCTURES AND UNIONS

 3.3.1. Structures - Introduction

Structure is a compound data type. It is used to store different types of data items. Sometimes a

structure is called as a record. The individual structure element is referred to as “members”. A

structure is a convenient method of handling a group of related data items of different data types.

Differences between Array and structure

 3.3.2. Defining a structure

The general format to define a structure is as follows.

struct tag_name

{

data_type member1;

data_type member2;

…

…

} ;

Here ‘struct’ is the keyword to declare a structure. tag _ name can be any user-defined identifier. The

structure declaration should always end with ‘;’.

Example

Consider a library database consisting of title of the book, autor name, number of pages and price. A

structure used to define the above is

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

};

The above example declares a structure “lib_books” with 4 members : title, author, pages and price.

Array Structure

Array is a collection of homogeneous data. Structure is a collection of heterogeneous data.

Array elements are referred by subscript. Structure elements are referred by its unique name.

Array elements are accessed by it's position

or subscript.

Stucture elements are accessed by its object as '.'

operator.

Array is a derived data type. Structure is user defined data type.

115

 3.3.3. Variable Declaration

The compiler does not reserve any memory space when a structure is declared. Memory space is

reserved when only a variable of this type is defined.

Structure variable is defined anywhere in the program by using the tag-name. For example, the

statement

struct lib_books c, java, basic;

defines c, java, basic as variables of type struct lib_books..

The syntax for creating the structure variable is

struct tag_name varaibe_name1, variable_name2,…….

The memory allocated for a structure variable is equal to the sum of memory allocated for all its

members.

For the above example 41 byte are allocated, for each variable, which is calculated as follows.

title 20 bytes (20 * 1) author- 15 bytes pages - 2 bytes price - 4 bytes

It is also possible to combine both definition and variable declaration in the same statement. For

example

struct lib_books

{

char title[20];

char author[15];

int pages;

float price;

} c, java, basic;

is also valid. The use of tag-name is optional when declaring the variables during structure definition.

 3.3.4. Initialization of a structure

The members of a structure can be initialized to constant values by enclosing the values to be assigned

within the braces after the structure definition. Thus the declaration

struct date

{

int date;

int month;

int year;

} republic = {26,1,1950};

initializes the member variables date, month, year of republic to 26,1,1950 respectively.

116

Struct date Gandhi_jay = {2,10,1869) initializes the member variable date, month and year of the

structure variable Gandhi_jay to 2,10,1869 respectively.

If number of elements placed in an initialization is less than the member of members present, then

the remaining members are initialized to zero, or NULL.

 3.3.5. Accessing and giving vales to members

The members themselves are not variables. They should be linked to structure variables in order to

make them meaningful members. To refer to the structure member, member operator ‘.’ is used. This

operator establishes a link between a member and a variable. This operator is also known as “dot

operator” or “period Operator”. A link is established by specifying the name of the variable, followed

by a period (dot), and then the name of the member. The syntax is

variable_name.member_name

For example price.c is the variable representing the price of c.

scanf function is used to assign values like

scanf(“%s”, c.title);

scanf(“%d”,& c.pages);

variables to the members of book1 can be assigned in the following way

strcpy(c.title,”basic”);

strcpy(c.author,”Balagurusamy”);

c.pages=250;

c.price=28.50;

Example:

#include< stdio.h >

void main()

struct stu_detail

{

int id_no;

char name[20];

char address[20];

int age;

}newstudent;

printf(“Enter the student information”);

printf(“Now Enter the student id_no”);

scanf(“%d”,&newstudent.id_no);

printf(“Enter the name of the student”);

scanf(“%s”,&new student.name);

printf(“Enter the address of the student”);

scanf(“%s”,&new student.address);

printf(“Enter the age of the student”);

http://www.exforsys.com/

117

scanf(“%d”,&new student.age);

printf(“Student information\n”);

printf(“student id_number=%d\n”,newstudent.id_no);

printf(“student name=%s\n”,newstudent.name);

printf(“student Address=%s\n”,newstudent.address);

printf(“Age of student=%d\n”,newstudent.age);

}

Structure variables can also be assigned to each other, just like with other variable types:

dob1 = dob2;

Each member of dob1 gets assigned the value of the corresponding member of dob2

The same member names can appear in different structures. There will be no confusion to the

compiler because when the member name is used it is prefixed by the name of the structure

variable.

 3.3.6. Structures within structures

A structure can be declared within another structure. Some times it is required to keep a compound

data items within another compound data item. Structures within a structure is called as nesting of

structures.

 Consider the following structure “student”. In this case the structure date may be placed inside this
structure. The structure ‘date’ contains date of birth of student.

struct date
{ int day;
 int month;
 int year; };
struct student
{

char name[20];
 structure date dob;

 };

The structure “student” contains another structure “date” as its one of its members. Following

program demonstrates how to initialize and manipulate the structure student

main()

{

struct student raja ={ “Raja”,{14,8,85}};.

 printf(“\n Name %s”,raja.name);

 printf(“\n Date of birth: %d - %d - %d”, raja.dob.day, raja.dob.month, raja.dob.year);

}

Note that the date, month, year are referred with another member operator along with raja.

Output : Name : Raja

 Date of Birth : 14 - 8 - 85

It should be understand that the total bytes allocated to raja is 26. (20+2+2+2 = 36)

118

Syntax for declaring a structure within another structure.

struct tag-name1 {declaration 1; declaration 2; …declaration;};

struct tag-name2

{

 declaration1;

 decalaration2;

 struct tag-name1 varaible-name1;

 declaration;

}

Nesting of more than one type of structure is permissible. However, a structure cannot be nested

within itself.

 3.3.7. Arrays of structures

Arrays of structures are commonly used when a large number of similar records are required to be

processed together.

Assume, a library has 1000 books. The data related to the above books can be organized in an array

of structures. The idea is very simple. First create a structure template. (i.e., declare a structure).

Then define an array with this structure for a specified size.

Consider the following example.

struct lib_books

{

char title[20];

int pages;

} ;

Then array of structure used is struct lib_books library{1000].

In the above statement library is an array containing 1000 elements of the type struct lib_books. The

advantage is that all these 1000 records can be easily manipulated with the help of loops.

The first record is referred as library[0], second record is referred by library [1] and so on. The first

record’s title and pages fields are referred as library[0].title and library[0].page.

Hence array of structures is used to manage large number of records easily.

 3.3.8. Arrays within structures

A structure can have an array within it. Consider the above example ‘lib-books’. Here the first field

name is an array which is declared as

char title[20];

Like this a structure can have number of arrays as members.

119

Example

struct student

{

char name[20];

int semester;

int year;

char branch[10];

int mark[3];

};

In the above example there are 5 members namely name, semester, year, branch and mark. Out of

these 5 fields, name and branch are character arrays and mark is an integer array.

The member mark contains three elements mark[0], mark[1] and mark[2]. If the structure is used to

create a variable, then the total amount of memory allocated is 45 bytes (25+2+2+10+2*3) .

Now let us see how to refer the various elements of the array mark. Consider the following definition.

main()

{

struc student DCT;

}

The first subject mark is referred as DCT. mark[0]. And second subject mark as DCT.mark[1] and so

on. This is how arrays can be placed inside structure in order to declare an user defined data type that

is representing a complex real world entity.

 3.3.9. Unions - Introduction

Union is another compound date type like structure. Union is used to minimize memory utilization.

In structure, each member has the separate storage location. But in union, all the members share the

common place of memory. Therefore, a union can handle only one member at a time.

Unions are useful for application involving multiple members, where values need not be assigned to

all the members at any one time.

 3.3.10. Declaration of union

Like structures union can be declared using the keyword union. The general format for declaring union

is,
union tag_name

{
data_type member_1;
data_type member_2;

data_type member_n;

};

where union is the key word. tag-name is any user defined data name.

120

Example

union Bio

{

char name[10];

int age ;

float height;

};

In the above example ‘union Bio’ has 3 members. First member is a character array ‘name’ having 10

characters (i.e., 10 bytes). Second member is an integer ‘age’ that requires 2 bytes. Third member is

a float ‘height’ requiring 4 bytes. All the three members are different data types.

Here all these 3 members are allocated with common memory. They all share the same memory. The

compiler allocates a place of storage that is large enough to hold the largest type in the union. In the

declaration above, the member “name” requires 10 bytes, which is the largest among the members.

The total memory allotted is also different from structures. In case of structure it will be 10+2+4 = 16.

But here it is only 10.

Union variables are created just like structure variables. For example to create a variable for above

‘union Bio’ , the following code is used.

main()
{
union Bio studentBio;

}

 3.3.11. Initializing Unions

Unions must always be initialized with its first field only. For example to initialize the above ‘Union

Bio’ the statement used is

main()
{
union Bio studentBio = {“Rama”};;

}

Here first element is a character array. Hence the variable studentBio is initialized with “Rama” which

is a character constant. The following are erronous initialization for the ‘union Bio’.

union Bio studentBio = {32};

union Bio studentBio = {172.3};

Advantages of Union

• It is used to minimize memory utilization.

• It is used to convert data from one type to another type.

• It is used to write a record into a file as a character.

121

S.No STRUCTURES UNIONS

1 Every member has its own memory space All members use the same memory space

2 Can handle all members as required at a time Can handle only one member at a time

3 All members can be initialized Only first member may be initialized

4 Difference Interpretations for the same

memory location is not possible

Different Interpretations for the same

memory location are possible

5 More storage space required Conservation of memory is possible

122

 Programs Using Functions, structure aand Unions

1. Write a C program to calculate the circumference and area of a circle given its
radius using functions. Implement calculation of circumference and areas as
separate functions.

#include <stdio.h>

const float pi = 3.141;

float area(float r); //function prototype

float circum(float r); //function prototype

int main(){

float radius;

printf("Enter radius: ");

scanf("%f",&radius); //read radius

printf("\nArea : %.2f", area(radius));

printf("\nCircumference : %.2f", circum(radius));

}

float area(float r)

{

return (pi*r*r);

}

float circum (float r)

{

return (2*pi*r);

}

2. Write a function called ‘prime’ that returns 1 if its argument is a prime no and
returns zero otherwise

#include<stdio.h>

main()

{ int i,j,number;

 printf(“\n Enter the number:”);

 scanf(“%d”,&number);

 if(prime(number))

 printf(“\n\n The given number is prime number”);

 else

 printf(“\n\n The given number is not prime number”);

}

int prime(int n)

{

 int j;

 for(j=2;j<=n-1;j++)

 if(n%j = = 0) break;

 if(j= =n) return 1;

 else return 0; }

123

3. Write a function sub-program in ‘C’ to find the value of y.

 y =x3+2x-10 if x>=10

= /x/ if x < 0

= 3x if 0 < x < 10

Use it in main program to evaluate y for x varying from -5 to 15 in steps of 0.5.

#include<stdio.h>

#include<math.h>

main()

{

float x,y;

float findy(float x) /* Prototype declaration */

clrscr();

for(x=-5;x<=15;x+=.5)

{

 printf(“\n\n The y value is :%f”,findy(x));

 getch();

}

getch();

}

float findy(float x)

{

 float t;

if(x>=10.0)

 return((x*x*x)+(2.0*x)-10.0);

 else if (x > 0)

 return(3.0*x);

 else

 {

 t=(x* -1) /* for absolute value */

 return t;

 }

}

4. Write a program to find the sum of the digits of a given number using function

/*find the sum of the digits of a given number using function*/

#include<stdio.h>

#include<conio.h>

void main()

{

int sumdigit(long int n);/*function prototype*/

124

long int num;

int sum;

clrscr();

printf("Enter the number\n\n");

scanf("%ld",&num);

sum=sumdigit(num);/*function call*/

printf("\n\nSum of digits of %ld is %d\n",num,sum);

getch();

}

/*function defunition sumdigit()*/

int sumdigit(long int n)

{

int r,s=0;/*local variables*/

do

{

r=n%10;

s+=r;

n/=10;

} while(n!=0);

return(s);

}

5. Write a program to find the largest of three numbers using function

/*largest of three numbers using function*/

#include<stdio.h>

void main()

{

int max(int x,int y,int z); /*function prototype*/

int a,b,c,result;

printf("Enter the three numbers\n:");

scanf("%d%d%d",&a,&b,&c);

printf("\na=%6d b=%6d c=%6d\n",a,b,c);

result=max(a,b,c);/*function call*/

printf("\n\nLargest of three numbers is %d\n",result);

getch();

}

/*function definition max()*/

int max(int x,int y,int z)

{

int big;/*local variable declaration*/

big=x;

if(y>big)

big=y;

if(z>big)

big=z;

return(big); }

125

6. Using recursion, write a C program to reverse a given number.

#include<stdio.h>

void main()

{

int n,r;

printf("enter an integer");

scanf("%d",&n);

rev(n);

getch();

}

rev (int n)

{

if (n>0)

{

printf ("%d",n%10);

rev(n/10);

}}

7. Devise a structure template that will hold the name of a month, a three-letter

 abbreviation for the month, the number of days in the month, and the month

 number.

Struct month

{

 char name[10];

 char abbrev[4];

 int days;

 int mo_numb;

};

8. Define an array of 12 varaibles of struct month of the previous question and initialize

 it for a non-leap year.

struct month months[12] = {

 {"January", "jan", 31, 1},

 {"February", "feb", 28, 2},

 {"March", "mar", 31, 3},

 {"April", "apr", 30, 4},

 {"May", "may", 31, 5},

 {"June", "jun", 30, 6},

 {"July", "jul", 31, 7},

 {"August", "aug", 31, 8},

 {"September", "sep", 30, 9},

 {"October", "oct", 31, 10},

 {"November", "nov", 30, 11},

 {"December", "dec", 31, 12} };

126

9. Define a structure “cricket” that will contain the following information: player name

, country name , batting average. Using “cricket”, declare an array ’player’ with 50

elements and write a program to read the info about all the 50 players and print a

country-wise list containing names of players with their batting average

struct cricket

{

 char p_name[20];

 char country[20];

 float bat_avg;

};

struct cricket player[50];

main()

{

 int i;

 char country[20];

for(i=0;i<50i++)

{

 printf(“\n Enter the details about %d batsman”,i+1);

 printf(“\n Enter the player name:”);

 gets(player[i].p_name);

 printf(“\n Country name:”)

gets(player[i].country);

printf(“\n batting average:”);

scanf(“%f”,& player[i].bat_avg);

}

printf(“\n Enter the country name to print country- wise list:”);

gets(country);

printf(“\n\t\t Country wise list”):

printf(“\n Batsman Name \t\tCountry name\t\tBat.Average”);

for(i=0;i<50i++)

 if(strcmp(player[i].country,country)= = 0)

 { printf(“%-20s\t%-20s\t%f”,player[i].p_name,

 ,player[i].country,player[i].bat_avg); }

printf(“\n”);

}

10. Write a program to create a record of 10 countries and capitals using structures.

Extend the above program to print the capital if country is given.

#include<stdio.h>

#include<string.h> /* for strcmpi() which ignores case */

struct count_capital

{

 char country[25];

 char capital[25];

} arr[10]; /* array of structures declared */

main()

127

{

 int i, total, choice;

 char country_name[25], capital_name[25];

 clrscr();

 printf(“\nEnter countries and corresponding capitals :\n”,)

 for(i=0;i<10;i++)

 {

 printf(“\nCountry : “);

 gets(arr[i].country);

 printf(“Capital :”);

 gets(arr[i].capital);

 }

 clrscr();

 printf(“Enter the option : \n”);

 printf(“\n1.Display the list \n”);

 printf(“\n2.Display the inputted country’s capital \n”);

printf(“\nOption : ”);

scanf(“%d”, &choice);

clrscr();

switch(choice);

{

case 1:

 printf(“Sr. No. Country Capital\n”);

 for(i=0;i<20;;i++)

 printf(“\n%25s%25s”, arr[i].country, arr[i].capital);

 break;

 case 2:

 printf(“Enter the country : “);

 gets(country_name);

 for(i=0;i<total;i++)

 {

 if(strcmpi(arr[i].country,country_name)==0)

{

 printf(“\nCountry : %s\n”, arr[i].country);

 printf(“\nCapital : %s\n”, arr[i].capital);

 break;

 }

 }

 if(i==total)

 printf(“\nNo match found for : %s\n”, country_name);

}

11. Define a structure for an employee of an organization having employee code, name,

address, phone number and number of dependents. Assume that “allEmployees” is

an array of employees in ascending order on the employee code. Write a function

to display the details of an employee given its employee code

128

struct employee

{

int emp_code;

char emp_name[30];

char emp_address[50];

char emp_ph_num[10];

int no_of_dep;

}allEmployees[100],b;

void display()

{

int ctr=0;

fp=fopen("employee.c","r");

rewind(fp);

while(fread(&allEmployees,sizeof(allEmployees[i]),1,fp)==1)

{ctr++;

clrscr();

heading();

printf("\n\n\n\tFollowing are the details :-");

printf("\n\n\tRecord #%d",ctr);

printf("\n\n\t\tCode : %d",allEmployees[i].emp_code);

printf("\n\n\t\tName : %s",allEmployees[i].emp_name);

printf("\n\n\t\tAddress : %s",allEmployees[i].emp_address);

printf("\n\n\t\tPhoneNumber:%s",allEmployees[i].emp_ph_num);

printf("\n\n\t\tNumber of Dependents

:%s",allEmployees[i].no_of_dep);

printf("\n\n\n\n\t\tPlease Press Enter...");

getch(); }}

12. Using recursion, write a C program to reverse a given number.

#include<stdio.h>

#include<conio.h>

void main(){

int n,r;

printf("enter an integer");

scanf("%d",&n);

rev(n);

getch();}

rev (int n)

{

if (n>0)

{

printf ("%d",n%10);

rev(n/10);}}

129

 SUMMARY

• A function is a self-contained program segment that performs a particular task.

• C functions are classified as 1. Pre-defined functions 2. Programmer - defined
functions

• Pre-defined functions are already written by compiler developers. Pre-defined functions are

not written by the programmer. Pre-defined functions are commonly used in all the programs.

• Programmer defined functions can be written by the programmer at the time of writing a

program.

• If type is not specified in the function definition, then the function returns an int value.

• Arguments appearing in the parentheses are called as formal parameters or formal arguments

or dummy arguments.

• Information is returned from the function to the calling program through a return statement.

A limitation of return statement is that it can return only one value

• Function declaration is the activity that is telling the compiler that a function is defined

somewhere below.

• The function main () invokes other functions within it. It is the first function to be called when

the program starts execution.

• A statement that invokes another function is called as the function call statement.

• Important points to be considered when calling a function are:

• A semicolon is used at the end of the statement when a function is called.

• Parentheses are compulsory after the function name.

• Whenever a function uses the service of another function, then the former one is called as

calling function and the later one is called as called function.

• The process of invoking a function is referred as “Calling a function”.

• While calling the function, some values are provided within (). These values are called as actual

parameters or actual arguments.

• This procedure for passing the values of arguments to a function is known call by value

• The scope of variable refers to visibility or accessibility of a variable. The lifetime of a variable

refers to the existence of a variable in memory.

• The four classes of a variable, as classified by their scope and life time are 1. Automatic

Variables 2. External variable 3. Static variable 4. Register variable.

• Automatic variables are declared inside a function. They are created as soon as a function

starts execution, and used within the function. At the end of the execution of the function, it

is destroyed.

• Automatic variables are therefore local to the function and are not recognized outside the

function. So automatic variables are also called as “local variable” or “internal variable”.

• External variables are active throughout the program execution. They are also known as global

variables. External variables can be accessed by any function in the program. External variables

are declared outside a function.

• Registers variables are placed in one of the machine registers, instead of using memory.

Accessing the register is very fast compared to memory. So frequently used variables are

placed in register. This will increase the execution speed

130

• ceil function returns the smallest integer greater than or equal to the given value. floor function

returns the largest integer less than or equal to the given value.

• In C it is possible to call a function itself. Recursion is a process by which a function calls itself

repeatedly until some specified condition has been satisfied. A function is called recursive if a

statement within the body of function calls the same function.

• There are two types of passing variables to function. They are, call by value and call by

reference

• A structure is a derived data type usually representing a collection of variables of same or

different data types grouped together under a single name .

• The tag_name is used to declare structure variable anywhere in the program

• The “struct” keyword is used to create a structure variable.

• Defining a structure means creating variables to access the members in the structure.

• An array is a collection of same data types. But structure is a collection of different data types.

• To refer to the structure member, member operator ‘.’ is used. This operator establishes a link

between a member and a variable. This operator is also known as “dot operator” or “period

Operator”.

• Nested structures are nothing but a structure within a structure is called nested structure.

• If a member of a structure is a pointer to itself, it is a self – referential structure.

• Array of structures are defined as a group of data types stored in a consecutive memory

location with a common variable name.

• A pointer to a structure is similar to a pointer to an ordinary variable. It is created in the same

way as a pointer to an ordinary variable is created.

• Union is another compound date type like structure. Union is used to minimize memory

utilization. In structure, each member has the separate storage location. But in union, all the

members share the common place of memory. Therefore, a union can handle only one

member at a time.

• Advantages of union are : (i) It is used to minimize memory utilization. (ii) It is used to convert

data from one type to another type. (iii) It is used to write a record into a file as a character.

131

 REVIEW QUESTIONS AND PROGRAMS

PART – A (2 Marks)

1. State any two advantages of functions.

2. What is a pre defined function? What is programmer defined function?

3. Write down any four functions available in ctype.h file

4. Write down any four functions available in math.h file

5. Write down the syntax and use of isalpha() function.

6. Write down the syntax and use of islower() function.

7. State the difference between ceil() and floor() functions

8. Give the general form of function definition.

9. What are the purposes of return statement.

10. What are the general forms of return statement.

11. What is a “Calling function”? What is a “Called function”?

12. How the variables are classified by their scope and lifetime?

13. What are external variables? State the other name of external variables.

14. What is register variables? State its use.

15. What is structure ? What is union?

16. Give the general syntax of structure .

17. Give the general syntax of union.

PART – B (3 Marks)

1. With syntax , explain any three functions available in math.h header file.

2. With syntax , explain any three functions available in ctype.h header file.

3. What is a recursive function? What are advantages of recursion?

4. Write the general form of structure. Give an example.

5. Give the example for structure initialization. Give an example.

6. Write down the main differences between an array and a structure.

7. What are the three ways of passing a structure to a function?

8. Define compare union with structure..

9. Write the general form of union. Give an example.

PART – C (5 Marks / 10 Marks)

1 What is a function? How the functions are classified? Explain.

2 Explain the syntax and usage of any six functions available in math.h header file.

3 Explain the syntax and usage of any six functions available in ctype.h header file.

4 Explain the syntax and usage of any six functions available in stdio.h header file.

5 State any five reasons for using user-defined function.

132

6 Explain the elements of function definition with an example.

7 State the use of return statement. What are the different forms of return statement? State

the limitations of return statement.

8 What do you meant by function prototyping? Explain.

9 How you will call a function? Explain your answer by giving an example.

10 What is register variable? Give its syntax. Also state the advantages and disadvantages of

register variable.

11 Compare different types of storage classes.

12 What is a recursion? Give an example program.

13 What is structure? List down the differences between structure and array.

14 How you will define a structure? How you will declare and initialize the values to variable?

15 Write down the procedure for accessing a variable in structure. Give an example.

16 Explain structures within structures.

17 What is union? List down the differences between structure and union.

18 How you will define a union? How you will declare and initialize the values to variable?

19 Explain call by value with an example program.

20 Explain the difference between a function declaration and function definition

21 Distinguish between the following: (i) Automatic and static variables (ii) Global and local

variables.

22 What are the elements of user defined function? Explain in detail.

23 How the user defined functions are classified? Explain each function with an example.

24 Explain briefly about the scope and lifetime of variables.

25 Explain the following; (i) Array of structures and (ii) Arrays within structures.

26 Write a C program to calculate the circumference and area of a circle given its radius using

functions. Implement calculation of circumference and areas as separate functions.

27 Write a function called ‘prime’ that returns 1 if its argument is a prime no and returns zero

otherwise.

28 Write a function sub-program in ‘C’ to find the value of y.

Y =x3+2x-10 if x >= 10

=/x/ if x < 0

=3x if 0 < x <10

Use it in main program to evaluate y for x varying form -5 to 15 in steps of 0.5.

29 Write a program to find the sum of the digits of a given number using function

30 Write a program to find the largest of three numbers using function

133

31 Using recursion, write a C program to reverse a given number.

32 Using recursion, write a C program to reverse a given number.

33 Devise a structure template that will hold the name of a month, a three-letter abbreviation

for the month, the number of days in the month, and the month number.

34 Define an array of 12 varaibles of struct month of the previous question and initialize it for a

non-leap year.

35 Define a structure “cricket” that will contain the following information: player name , country

name , batting average. Using “cricket”, declare an array ’player’ with 50 elements and write

a program to read the info about all the 50 players and print a country-wise list containing

names of players with their batting average

Write a program to create a record of 10 countries and capitals using structures. Extend the

above program to print the capital if country is given.

36 Define a structure for an employee of an organization having employee code, name, address,

phone number and number of dependents. Assume that “allEmployees” is an array of

employees in ascending order on the employee code. Write a function to display the details

of an employee given its employee code.

134

UNIT – IV

 POINTERS

OBJECTIVES

 At the end of the unit, the students will be able to

• Define pointer

• Discuss the advantages of pointers.

• Understand the concept of pointers

• Learn the use of pointer variables.

• Understand pointer arithmetic.

• Learn about the concept and construction of array of pointers and pointer to array.

• Discuss pointers and functions

• Get an idea about pointers to functions – functions as arguments to another function

• Understand dynamic memory location using pointers

• Describe about the functions used in dynamic memory allocation.

• Differentiate dynamic memory functions.

INTRODUCTION

Pointer is an important feature of C Language. A pointer is a derived data type in C. It is powerful and

handy tools of C language. As the pointers are closely associated with the arrays, they provide an

alternative way to access the individual element of an array. C Programmers use pointers to make the

code more efficient. Some C programming tasks are performed more easily with pointers, and other

tasks, such as dynamic memory allocation, cannot be performed without using pointers. So it becomes

necessary to learn pointers to become a perfect C programmer.

C language requires the number of elements in an array to be specified at compile time. But

sometimes, it is not possible to judge the number of elements. C languages permit a programmer to

specify an array’s size at run time. C language have the ability to calculate and assign, during execution,

the memory space required by the variables in a program. The process of allocating memory during

run time is called as dynamic memory allocation.

4.1. POINTERS

 4.1.1. DEFINITION

A pointer is a variable that is used to store the address of another variable. Since a pointer is also

another variable, its value is also stored in the memory in another location. The pointer variable might

be belonging to any of the data type such as int, float, char, double, short etc.

Each memory cell in the computer has an address that can be used to access that location. So a pointer

variable points to a memory location. The contents of this memory location can be accessed and

changed by using pointer variable.

135

Assume a variable “cost”. Then the address of this cost is assigned to pointer variable ptr. The link

between the variables ptr and cost is shown in figure. Assume the address of ptr is 2050. The link

between the two variables are shown in the following figure.

Variable Value address

cost 500 2000

ptr 2000 2050

POINTERS CONTAIN MEMORY ADDRESSES, NOT DATA VALUES!

 4.1.2. ADVANTAGES OF POINTERS

1. Pointers are used to increase the speed of the execution.

2. Pointers are used to reduce the length and complexity of program.

3. A pointer is used to access a variable that is defined outside the function.

4. Storage space is saved when using pointer array to character strings.

5. Pointers can also be used in efficient manner to access the individual array elements.

 4.1.3. DEFINING A POINTER VARIABLE

Pointer variables, like all other variables, must be declared before they may be used in a C program.

The interpretation of a pointer declaration is somewhat different than the interpretation of other

variable declarations. For defining a pointer variable ‘*’ symbol is used. A pointer variable must be

declared with preceding the variable name. This signifies that it is not an ordinary variable but a

pointer variable. The type of data it is pointing must be specified. The general structure for declaring

a pointer variable is

data_type *ptr_name;

For example, the statement int *p declares p as a pointer variable that points to an integer data type.

{

For example,

float a,b;

float *pb;

The first line declares a and b to be floating-point variables. The second line declares pb to be a pointer

variable whose object is a floating-point quantity i.e. 'pb' point to a floating point quantity. 'pb'

represents an address, not a floating-point quantity. Within a variable declaration, a pointer variable

can be initialized by assigning it the address of another variable.

136

 4.1.4. ADDRESS OPERATOR – ACCESSING THE ADDRESS OF A VARIABLE

The address of a variable is obtained with the help of “&” operator at any time. & operator is called as
“address operator”. The operator & immediately preceding a variable returns the address of the
variable. For example, the statement

ptr=#

places the address of num into the variable ptr. If num is stored in memory 21260 address, then the

variable ptr has the value 21260.

/* A program to illustrate pointer declaration*/

main()

{

int *ptr;

int sum;

sum=45;

ptr= ∑

printf (“\n Sum is %d\n”, sum);

printf (“\n The sum pointer is %d”, ptr);

}

 4.1.5. ACCESSING A VARIABLE THROUGH ITS POINTER

The content of any pointer variable can be accessed with the help of “*” operator. The operator “*”

is known as indirection operator. If “p” is an pointer variable, then *p is used to access the content

of the pointer variable “p”. For example the statement t=*p is used to assign the contents of the

pointer variable p to t.

/* Program to display the contents of the variable using pointer variable*/

include<stdio.h>

{

int num, *intptr;

float x, *floptr;

char ch, *cptr;

num=123;

x=12.34;

ch=’a’;

intptr=&x;

cptr=&ch;

floptr=&x;

printf(“Num %d stored at address %u\n”,*intptr,intptr);

printf(“Value %f stored at address %u\n”,*floptr,floptr);

printf(“Character %c stored at address %u\n”,*cptr,cptr);

}

137

 4.1.6.INITIALIZATION OF POINTERS

Before using the pointer, it should be initialized. Static local pointer variables and global pointer

variables are initialized with NULL by default. “NULL” is a pointer constant whose numerical value is

zero.

Automatic pointer variable can be either initialized with NULL or with address of some other variable

that is already defined.

For example in the statement,

p = & cost;

p contains the address of cost. This is called pointer initialization.

A pointer variable can also be initialized in the declaration statement itself. For example.

int a; *b = &a; is also valid.

Example :

include <stdio.h>

main ()

{

int a=3;

int b;

int *pa; /* to an integer */

int *pb;/*pointer to an integer */

pa=&a;/* assign address of a to pa */

b=*pa;/* assign value of a to b*/

pb=&b;/* assign address of b to pb */

printf (“\n% d %d % d %d”, a, &a,pa, *pa);

printf (“\n% d %d % d %d”, b, &b, pb, *pb);

}

The output is : 3 F8E F8E 3

 3 F8C F8C 3

The unary operators & and * are members of the same precedence group.The address operator (&)

must act upon operands associated with unique addresses, such as ordinary variables or single array

elements. Thus, the address operator cannot act upon arithmetic expression, such as 2*(a+b). The

indirection operator (*) can only act upon operands that are pointers.

Example:

include <stdio.h>

main() {

int i=3,* j;k; /*j is a pointer to integer */

j=&i; /*j points to the location of i*/

k=*j ; /*assign to k the value pointed to by j*/

j=4 /assign 4 to the location pointed to by j/

printf(“i=%d, *j=%d, k=%d\n,” i, *j, k);}

The output is as follows: i=4,*j=4, k=3

138

 4.1.7. NULL POINTERS

It is always a good practice to assign a NULL value to a pointer variable in case you do not
have an exact address to be assigned. This is done at the time of variable declaration. A
pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries.
Consider the following program –

#include <stdio.h>
int main () {
 int *ptr = NULL;
 printf("The value of ptr is : %x\n", ptr);
 return 0;
}

When the above code is compiled and executed, it produces the following result −
The value of ptr is 0

In most of the operating systems, programs are not permitted to access memory at address
0 because that memory is reserved by the operating system. However, the memory address
0 has special significance; it signals that the pointer is not intended to point to an accessible
memory location. But by convention, if a pointer contains the null (zero) value, it is assumed
to point to nothing.

To check for a null pointer, you can use an 'if' statement as follows −

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

 4.1.8. POINTER EXPRESSIONS

Pointer variables can also be used in expressions. Assume a and c are pointers. Then the following is

an example of pointer expression

c = *a + 14;

The above expression adds the value 14 to the contents of address stored in a and assigns the new

value to c. The following are also valid expressions.

2. x = *a * *b;

3. total = total - *a;

4. z = *b/*a + 10;

5. *b = *b + 10;

The pointers may not be used in division or multiplication. For example *a/3 or *a x 3 are not allowed.

Two pointer variables can be compared provided both points to objects of same type. Some examples

are a>b, a==b, and a!=b. Comparisons can be used in handling arrays and strings.

139

 4.1.9. INCREMENT AND SCALE FACTOR

The content of location a is incremented by 1 through a+=1; The contents can also be incremented

either through ++*p; or (*p)++; It is also possible to add integers or subtract integers from pointers.

Subtraction of one pointer from another pointer is also possible. For example the following

statements are valid.

 a++ - -b; a-b;

When a pointer is incremented, its value is incremented by the length of the data type it points to.

For example assume a is an integer pointer and its value is 5000. After performing the operation a

= a+1, the value of a will be 5002, and not 5001. Because, integer value occupies 2 bytes. This length

is called the scale factor.

#include<stdio.h>

main()

{

int i = 3, *x ;

float j = 1.5, *y ;

char k = 'c',*z ;

x=&i ;

y=&j;

z =&k ;

printf ("Original value in x = %d\n", x) ;

printf ("Original value in y = %d\n", y) ;

printf ("Original valueJn z = %d\n\n', z) ;

x++;

y++;

z++;

printf ("New value in x = %d\n", x) ;

printf ("New value in y = %d\n", y) ;

printf ("New value in z = %d\n", z) ;

getch();

}

Output

Suppose i, j and k are stored in memory at addresses 1002, 2004

and 5006, the output would be...

 Value of i = 3

 Value of j = 1.5

 Value of k= c

 Original value in x = 1002

 Original value in y = 2004

 Original value in z = 5006

 New value in x = 1004

 New value in y = 2008

 New value in z = 5007

 4.1.10. KEYPOINTS TO REMEMBER ABOUT POINTERS IN C

1. A pointer variable can be assigned the address of an ordinary variable.

2. A pointer variable can be assigned the value of another pointer variable provided both

pointers point to objects of the same data type.

3. An integer quantity can be added to or subtracted from a pointer variable.

4. A pointer variable can be assigned a null (zero) value.

5. One pointer variable can be subtracted from another provided both pointers point to

elements of the same array.

6. Two pointer variables can be compared provided both pointers point to objects of the same

data type.

7. A pointer variable can be assigned to address of another variable.

8. A pointer variable can be assigned the values of another pointer variables.

140

9. A pointer variable can be initialized with NULL or 0 value.

10. A pointer variable can be prefixed or postfixed with increment and decrement operator.

11. An integer value may be added or subtracted from a pointer variable.

12. When 2 pointers points to the same array, one pointer variable can be subtracted from

another.

13. When two pointers points to the objects of save data types, they can be compared using

relational opeartor.

14. A pointer variable cannot be multiple by a constant.

15. Two pointer variables cannot be added.

16. A value cannot be assigned to an arbitrary address

 4.1.11. POINTERS AND ARRAYS

Pointers and arrays have got close relationship. In fact array name itself is a pointer. Some times

pointers and array names can be interchangeably used.

The array name always points to the first element of the array. For example, an array int a[5]; is shown

in the following figure.
 a:

a[0] a[1] a[2] a[3] a[4]

Here ‘a’ points to the first element of the array. That means a is &a[0].

In arrays a and &a both are same. Hence a, &a and &a[0] all means same. But there exists difference

between array and pointer in certain aspects. . Similarly, the address of the second array element can

be written as either & a [1] or as (a+1) and so on.

Since &x[i] and (x+i) both represent the address of the ith element of x then x [i] and *(x+i) both

represent the contents of that address. The two terms are interchangeable.

Array name is a constant pointer. It can’t be assigned with new address. It always points to the first

element. But it’s address can be used for some other purpose.

Example

main()
{
int a[5];
int i;
a++; /* error*/
a= &i; /* error*/
(a+2) = 30; / ok*/

141

 a:

 30

a[0] a[1] a[2] a[3] a[4]

Here *(a+2) actually refers to a [2]. At some places pointers and arrays can be interchangeably used.

A program to display the contents of array using pointer
main()

{

int a[100];

int *ptr;

int i,j,n;

printf(“\nEnter the elements of the array\n”);

scanf(“%d”,&n);

printf(“Enter the array elements”);

for(i=0;i< n;i++)

scanf(“%d”,&a[i]);

printf(“Array element are”);

for(ptr=a,ptr< (a+n);ptr++)

printf(“Value of a[%d]=%d stored at address %u”,j+=,*ptr,ptr);

}

A Program to compute the sum of all the elements in an array.

main()

{

int *p, total = 0; i=0;

int a[5]= {2,3,4,6,7};

p = a;

for (i=0; i<5; i++)

{

total = total + *p;

p++;

}

printf(“\nTotal%d”, total)

}

4.1.12 .POINTERS AND FUNCTIONS

A function also has an address location in memory. It is therefore possible to declare a pointer to a

function which can be used as an argument in another function.

A pointer to a function is described as follows

 type (*pointer-name) ();

142

For example int (*sqrt) () tells the compiler that sqrt is a pointer to a function which returns an int
value.

For example, in the statements

 int *sqr (), square ();

 sqr = square;

sqr is pointer to a function and sqr points to the function square. To call the function square, the

pointer sqr is used with the list of parenthesis. That is,

 (*sqr) (a,b)

Is equivalent to

 square (a,b)

Pointers as functions arguments (Call by Reference)

A pointer plays an important role when used with functions. Pointer variables can be passed as

arguments to some other function. That is, the address of a variable is passed to another function.

This type of function call is known as call by reference. The function is allowed to access and change

the variable of a calling function. When passing the address of a variable as an argument to a function,

the parameters receiving the address should be pointers.

When the function invocation uses the method call by value, the value of actual parameter is copied

to dummy parameters.

In the case of call by reference method, instead of passing the values, the addresses of actual

arguments in the calling function are copied into formal arguments of the called function. Hence it is

possible to change the actual argument within the function body. This means, using these addresses

it is possible to have an access to the actual arguments and hence manipulate them.

Since the actual argument variable and the corresponding dummy pointer refer to the same memory location,

changing the contents of the dummy pointer will- by necessity- change the contents of the actual argument

variable. The following program illustrates this fact.

#include <stdio.h>

main ()

{

int i,j;

i=2;

j=5;

printf(“i=%d and j=%d\n”, i,j);

/* Now exchange them */

swap(&i,&j);

printf(“\nnow i=%d and j=%d\n”, i,j);

}

swap(i,j)

int *i,*j;

{

int temp=*i; /* create temp and store into it the value pointed to by “i”*/

*i=*j; /*The value pointed to by j is stored in the location pointed to by i*/

143

j=temp;/ Assign temp to the location pointed to by j*/

}

The output is as follows:

i=2 and j=5

Now i=5 and j=2

If the formal parameters i and j of the swap function were declared merely as integers, and the main

function passed only i and j rather than their addresses, the exchange made in swap would have no

effect on the variables i and j in main. The variable temp in swap function is of type int, not int*. The

values being exchanged are not the pointers, but the integers being pointed to by them. Also temp is

initialized immediately upon declaration to the value pointed to by i.

C program to find the highest of three numbers using pointer to function is listed below:

#include<conio.h>

void main()

{

int x,y,z;

clrscr();

printf("\n Enter three numbers : ");

scanf("%d %d %d",&x,&y,&z);

printf("\n\n The highest of the three numbers is : ");

highest(&x,&y,&z);

getch();

}

highest(a,b,c)

int *a,*b,*c;

{

if(*a > *b && *a > *c)

printf("%d",*a);

else if(*b > *a && *b > *c)

printf("%d",*b);

else

printf("%d",*c);

}

 4.1.13 .POINTERS AND CHARACTER STRINGS

Character array is called as string variable. Pointer is used to access the individual character in a

string.

Example:

main()

{

char name[30];

char *p;

p = name;

144

strcpy(p,””salem””);

printf(“\n%s”, name);

}

Output : salem

Here ‘p’ is an alias name of character array ‘name’. Character pointers can be used effectively for

various purposes.

Example:

main()

{

char name[30] ={“”salem””};

char name1[30];

void mycopy (char *, char *);

mycopy(name1,name);

printf(“\n%s”, name1);

}

void mycopy (char *d, char *s)

{

 While (*s !=’’\0’’)

 {

 (*d++ = *s++);

 }

}

Output salem

The above program copies one string to another string. In the above function pointer arithmetic is

used. After copying the content of one pointer to another, they are incremented to point the next

element. Hence next element is copied. This is repeated until ‘\0’ is encountered. The while loop will

be continued as long as the condition is true i.e., non-zero.

 4.1.14 .ARRAY OF POINTERS TO STRINGS

Sometimes it is required to store more than one string in an array. One way is to use two dimensional

character array.

Example

main()

{

int i;

char name[3][12]={“Ramu”, “Govindan”, “Rajasekaran”};

for (i=1; i<3; i++)

{

printf(“\n%s ”, name[i]);

}}

145

Note that irrespective of the size of the names totally 3 * 12 = 36 bytes of memory is allocated. When

using array of pointers , the memory usage can be minimized.

Example

main()

{

int i;

char *name[3]={“Ramu”, “Govindan”, “Rajasekaran”};

for (i=1; i<3; i++)

{

printf(“\n%s ”, name[i]);

}

}

In this declaration name[] is an array of pointers. It contains base addresses of respective names. That

is, base address of “Ramu” is stored in name[0], base address of “Govindan” is stored in name[1] and

so on.

Here only required amount of memory is allocated. i.e.,5 +9 + 12 = 26 bytes. Hence we have saved

10 bytes.

Advantages of storing strings in an array of pointers:

1. One reason to store strings in an array of pointers is to make a more efficient use of available

memory.

2. Another reason to use an array of pointers to store strings is to obtain greater ease in

manipulation of the strings.

Limitation of array of pointers to strings

When using a two-dimensional array of characters, it is possible to initialize the strings when declaring

the array or the strings can be received through scanf() function.

However, when using an array of pointers to strings, it is possible to initialize the strings at the place

where we are declaring the array, but it is not possible to receive the strings from keyboard using

scanf(). Thus, the following program would never work out.

main()

{

char *names[6] ;

int i ;

for (i = 0 ; i <= 5 ; i++)

{

printf ("\nEnter name ") ;

scanf ("%s", names[i]) ;

} }

146

4.1.15 .POINTERS AND STRUCTURES

In an array, the name of an array stands for the address of its zeroth element. Similarly struct variable

represents the address of its first element.

Example

typedef struct Bio

{

char name[30];

int age;

};

main()

{ Bio Record;

Bio *p;

p = & Record;

printf(“\n Enter Name;”);

scanf(“%s”, (*p).name);

printf(“\n Enter Age;”);

scanf(“%d”, &(*p).age);

printf(“\n Name;”, (*p).name);

printf(“\n Age%d”, (*p).age);

}

Output:

Enter Name : Ramu

Enter Age : 28

Name : Ramu

Age : 28

Here in this program first ‘Bio’ struct type is declared. Then in main(), Record of type ‘Bio’ and a

pointer ‘p’ of type ‘Bio’ is defined.

Then ‘p’ is made to point ‘Record’. Hence ‘*p’ is an alias name of ‘Record’. There after whenever ‘*p’

is referred, it should be interpreted as ‘Record’. Then the fields of Record name and age are read and

they are printed.

Note for referring the fields, use both indirection operation ‘*’ and member operator “.”.

i.e., (*p). name

Parenthesis is required since priority of ‘.’ operator is higher than ‘*’ operator. Apply ‘*’ operator first.

Hence change the order of priority by using parenthesis.

This leads to confusion. Hence instead of using ‘*’, ‘.’ and parenthesis,

the above is simplified by using the - > operator. The symbol -> is called as arrow operator.

147

Instead of writing (*p). name, we write

p-> name ; /* no space between p->name */

which is more simple.

A pointer pointing to a structure just the same way a pointer pointing to an int, such pointers are

known as structure pointers. For example consider the following example:

#include<stdio.h>

#include<conio.h>

struct student

{

char name[20];

int roll_no;

};

void main()

{

struct student stu[3],*ptr;

clrscr();

printf("\n Enter data\n");

for(ptr=stu;ptr<stu+3;ptr++)

{ printf("Name");

scanf("%s",ptr->name);

printf("roll_no");

scanf("%d",&ptr->roll_no);

}

printf("\nStudent Data\n\n");

ptr=stu;

while(ptr<stu+3)

{

printf("%s %5d\n",ptr->name,ptr->roll_no); ptr++;

}

getch();}

Here ptr is a structure pointer not a structure variable and dot operator requires a structure variable

on its left. C provides arrow operator “->” to refer to structure elements. “ptr=stu” would assign the

address of the zeroth element of stu to ptr. Its members can be accessed by statement like “ptr-

>name”. When the pointer ptr is incremented by one, it is made to point to the next record, that is

stu[1] and so on.

148

 4.1.16 .POINTER TO POINTER

A pointer to a pointer is a form of multiple indirection, or a chain of pointers. Normally, a pointer

contains the address of a variable. When we define a pointer to a pointer, the first pointer contains

the address of the second pointer, which points to the location that contains the actual value as shown

below.

A variable that is a pointer to a pointer must be declared as such. This is done by placing an additional

asterisk in front of its name. For example, following is the declaration to declare a pointer to a pointer

of type int:

int **var;

When a target value is indirectly pointed to by a pointer to a pointer, accessing that value requires

that the asterisk operator be applied twice, as is shown below in the example:

#include <stdio.h>

int main ()

{

int var;

int *ptr;

int **pptr;

var = 3000; /* take the address of var */

ptr = &var;

/* take the address of ptr using address of operator & */

pptr = &ptr;

/* take the value using pptr */

printf("Value of var = %d\n", var);

printf("Value available at *ptr = %d\n", *ptr);

printf("Value available at **pptr = %d\n", **pptr);

return 0;

}

When the above code is compiled and executed, it produces following result:

Value of var = 3000

Value available at *ptr = 3000

Value available at **pptr = 3000

149

4.2 DYNAMIC MEMORY ALLOCATION

The process of allocating memory at run time is known as dynamic memory allocation. Dynamic

memory management technique is used to optimize the use of storage space. These techniques are

used to allocate additional memory space or to release the unwanted space at run time. Using

dynamic memory management techniques, the programmer can allocate memory whenever he

decides and releases it after using the memory.

The functions used in the dynamic memory management are (i) malloc () (ii) calloc() (iii) realloc()

and (iv) free ().

 4.2.1 malloc()

The name malloc stands for "memory allocation". This function is used to allocate a block of memory.

The required amount of byte should be specified as argument to the function. After allocating

memory in the heap (free memory) the function returns the starting address of the block of memory

allotted.

Syntax

ptr = (cast_type *) malloc (size);

where ptr is a pointer of type cast_type.

For example the statement p = (int*) malloc(100); reserves 100 bytes of the memory and the

address of the first byte of the memory allocated is assigned to the pointer p of type int.

Example

main()

{

int *p;

p = (int*) malloc(6);

p[0] = 10;

p[1] = 20;

p[2] = 30;

printf(“\n%d %d %d”, p[0] , p[1] , p[2]) ;

free (p);

}

Output: 10 20 30

Here ‘p’ is an integer pointer. A pointer variable stores the memory address.

150

The malloc() allocates 6 bytes in heap and the address is converted to integer address by means of

(int *) cast operator. This converted address is assigned to the pointer ‘p’.

Now ‘p’ points to 6 byte of memory block each 2 byte pair representing an integer. In short ‘p’ is an

array having 3 elements namely p[0], p[1] and p[2].

There after ‘p’ can be used as if it is an array. But the difference is that whenever required, the

elements can be created and after having used it may be released using free(). The following figure

shows this setup.

1 0 2 0 3 0

p[0] p[1] p[2]

The storage space allocated dynamically has no name and therefore its contents can be accessed only

through a pointer.

Example:

// Program to demonstrate usage of malloc()

#include<stdio.h>

main()

{

int n, avg, i, *p, sum = 0;

printf("Enter the number of students");

scanf("%d",&n);

p = (int *) malloc (n * 2);

if(p == NULL)

{ printf("Memory allocation unsuccesful");

exit();

}

for(i = 0; i< n; i++)

scanf("%d",(p + i));

for(i = 0; i<n; i++)

sum = sum + *p;

avg = sum / n;

printf("Average marks = %d", avg);

getch();

}

The above program asks for the number of students whose marks are to be entered and then
allocate only as much memory as is really required to store these marks. The allocation job is
done by malloc(). It returns a NULL if memory allocation is unsuccessful. If successful it
returns the address of the memory chunk that was allocated.

151

This address we collected in an integer pointer p. The expression (int *) is used to type cast
the address being returned as the address of an integer rather than a character. This type
casting is necessary since malloc() by default returns a pointer to a void.

 4.2.2 free()

This function is used to deallocate the memory. The release of storage space is important when the

storage is limited. When data stored in a block of memory is not needed, then release that portion of

the memory.

Syntax

free(pointer

variable);

where pointer variable is a pointer to a memory block which has already been created by malloc or

calloc.
Example

main()

{

int *p;

p = (int*) malloc(6);

free (p);

}

 4.2.3 calloc()

The name calloc stands for "contiguous allocation" malloc() is used to allocate single block of memory.

Whereas calloc() will allocate multiple blocks of storage, each of the same size and initialize all the

bytes of the memory to zero. calloc function is used when requesting memory space at run time for

storing derived data types such as arrays and structure.

Syntax

p = (cast_type) *) calloc (number of blocks, block size);

This allocates continuously memory blocks each with the specified size. The returned address will be

the address of the starting byte. If the required amount of memory is not available, then NULL value

is returned.

Example

main()

{

int *p;

p = (int*) calloc(10, sizeof(int));

}

152

This allocates 10 continuous blocks of memory and each block having 2 bytes.

Differences between malloc() and calloc()

Another minor difference between malloc() and calloc() is that by default the memory
allocated by malloc() contains garbage values whereas that allocated by calloc() contains all
zeros.

While malloc allocates a single block of storage space, calloc allocates multiple block of storage,

each of the same size, and then sets all bytes to zero.

 4.2.4 relloc()

This function is used to change the memory size previously allocated. The space may be increased or

decreased.

Syntax

ptr= realloc (pointer variable name, new size);

This function allocates a new memory space of size equal to the new size to the pointer variable ptr

and returns a pointer to the first byte of the new memory block.

The new size may be large or smaller then the original size. Consider the following example.

main()

{

int *p;

p = (int*) malloc(10);

P= (int*) realloc(p,20);

}

Here initially ‘p’ is allotted with 10 bytes. But later it is felt that amount of memory is to be increased.

That is done with the help of realloc() function. This time 20 bytes are allotted.

Like that, it is also possible to decrease the memory size.

Here also if it is not possible to allocate memory space, realloc() returns NULL value, and the original

block is lost. Here, ptr is reallocated with size of newsize.

#include <stdio.h>

#include <stdlib.h>

int main(){

 int *ptr,i,n1,n2;

153

 printf("Enter size of array: ");

 scanf("%d",&n1);

 ptr=(int*)malloc(n1*sizeof(int));

 printf("Address of previously allocated memory: ");

 for(i=0;i<n1;++i)

 printf("%u\t",ptr+i);

 printf("\nEnter new size of array: ");

 scanf("%d",&n2);

 ptr=realloc(ptr,n2);

 for(i=0;i<n2;++i)

 printf("%u\t",ptr+i);

 return 0;

}

 PROGRAMS USING POINTERS

1. Consider the following:

P1 is an integer pointer

P2 is a long integer pointer

P3 is a character type pointer

The initial value of P1 is 2800, P2 is 1411 and P3 is 1201.

What is the new value of P1 after P1=P1+1, P2 after P2=P2+1 and

P3 after P3=P3+1; (4)

The initial value of P1 is 2800 which is an integer pointer so new value of P1 is 2802 after P1=

P1+1

The initial value of P2 is 1411 which is a long integer pointer so new value of P1 is 1415 after

P2= P2+1 because long takes 4 bytes of memory.

The initial value of P3 is 1201 which is a char type pointer so new value of P3 is 1202 after P3=

P3+1

2. Write a program to read in an array of integers .Instead of using Subscripting ,however,
employ an integer pointer that using to the element currently being read in and which is
incremented each time. Write a function to display the array.

#include<stdio.h>

#include<conio.h>

 #define MAX 50

main()

{

154

 int array[MAX];

 int i,n;

 int *employ=array;

clrscr();

printf(“\n How many numbers:”);

scanf(“%d”,n);

for(i=0;i<n;i++)

{

 printf(“\n Enter the %d number:”,i+1);

 scanf(“%d”,employ+1);

}

display(employ,n)

}

display(int *ptr,int size)

{

 int i;

 for(i=0;i<size;i++)

 printf(“\n The %d number : %d”,i+1,*(ptr+i));

}

3. Write a ‘c’ program to sort an array of integers using pointers

#include<stdio.h>

#include<conio.h>

main()

{

 int number[50];

 int i,j,n,*temp,*ptr=number;

 clrscr();

 printf(“\n How many numbers:”);

 scanf(“%d”,&n);

for(i=0;i<n;i++)

{

 printf(“\n Enter the %d number:”,i+1);

 scanf(“%d”,ptr+i);

}

for(i=0;i<n-1;i++)

 for(j=i;j<n;j++)

 {

 if(*(ptr+i)>*(ptr+j))

 {

155

 temp=(ptr+i);

 (ptr+i)=(ptr+j);

 *(ptr+j)=*temp;

 }

 }

printf(“\n\n The sorted array :”);

for(i=0;i<n;i++)

 printf(“\n The %d number : %d”,i+1,*(ptr+i));

getch();

}

4. What is the output of the following?

main()

{

 int i=4,j=2;

 jack(&i,j);

 printf(“%d%d”,i,j);

}

jack(int *i,int j)

{

 *i=*i * *i;

 j=j * j;

}

Output 16 2

5. Write a program using pointers to read an array of integers and prints its elements in
reverse order.

#include<stdio.h>

main()

{

 int array[50],*ptr=array,n,i;

 clrscr();

 printf(“\n How many integers:”);

 scanf(“%d”,&n);

 for(i=0;i<n;i++)

 {

 printf(“\n Enter the %d number:”,i+1);

 scanf(“%d”,ptr++);

 }

156

 ptr--;

 while(ptr>ptr-array)

 printf(“\n %d”,*(ptr--));

}

6. Write a program using pointers, which accepts a string and displays the length of the string

#include<stdio.h>

main()

{

 char str[50],*ptr=str;

 int len=0;

 clrscr();

 printf(“\n Enter the string:”);

 gets(str);

 while(*(ptr++))

 ++len;

 printf(“\n\n The length of the string is:%d”,len);

}

7. Write a program that accepts two strings, compares them and displays which is bigger. Use
pointer notations.

#include<stdio.h>

main()

{

 char str1[50],str2[50];

 char *ptr1=str1,*ptr2=str2;

 int len1=0,len2=0;

 clrscr();

 printf(“\n Enter the first string:”);

 gets(str1);

 printf(“\n Enter the second string:”);

 gets(str2);

 while(*ptr1++))

 { ++len1; }

 while(*ptr2++))

 { ++len2 }

 if(len1>len2) printf(“\n The first string is bigger”);

 else if(len1<len2) printf(“\n The second string is bigger”);

 else printf(“\n The two strings are equal”);

}

157

8. Write a program that , given two strings, appends the second string to the first

#include<stdio.h>

#include<string.h>

main()

{

 char str1[50],str2[50];

 char *ptr1=str,*ptr2=str2;

 clrscr();

 printf(“\n Enter the first string:”);

 gets(str1);

 printf(“\n Enter the second string:”);

 gets(str2);

 ptr1=str1+strlen(str1);

 while(*(ptr++) = *(ptr2++));

 *(ptr1) = NULL;

 printf(“\n\n The concatenated string is :%s”,str1);

}

9. Write a program to reverse a string using pointer.

#include<stdio.h>

#include<conio.h>

void main()

{

int i,j;

char *a;

clrscr();

printf("enter a string");

scanf("%s",a);

i=0;

while(*(a+i)!='\0')

i++;

for(j=i-1;j>=0;j--)

printf("%c",*(a+j));

getch();

}

10. Write a C program to display the contents of an array using a pointer arithmetic:

#include<conio.h>

void main()

{

int *p,sum,i;

158

static int x[5] = {5,9,6,3,7};

i=0;

p=x;

sum=0;

clrscr();

printf("\nElement Value Address\n\n");

while(i<5)

{

printf(" x[%d] %d %u\n",i,*p,p);

sum+=*p;

i++;

*p++;

}

printf("\n Sum = %d\n",sum);

printf("\n &x[0] = %u\n",&x[0]);

printf("\n p = %u\n",p);

getch();

}

11. Differentiate between pointer (*) and address (&) operator using examples.

The indirection operator (*) gets the value stored in the memory location whose address

is stored in a pointer variable. The address of (&) operator returns the address of the memory

location in which the variable is stored. The output of the following example shows the

difference between * and &.

#include<conio.h>

void main()

{

int k;

int *ptr;

clrscr();

k=10;

ptr=&k;

printf("\n Value of k is %d\n\n",k);

printf("%d is stored at addr %u\n",k,&k);

printf("%d is stored at addr %u\n",*ptr,ptr);

*ptr=25;

printf("\n Now k = %d\n",k);

getch(); }

159

12. Compare Indirection and Address-Of Operators

Indirection: * is applied to a pointer variable, to refer to the location whose address is stored
inside the pointer variable.

– It CANNOT be applied to non-pointer variables.

– It CAN appear on either side of an assignment statement.

Address-Of: & is applied to a non-pointer variable, to return the address of the variable.

– It CAN be applied to a pointer variable.

– It CANNOT appear on the lefthand side of an assignment statement. (You can’t change the
address of a variable.)

13. Define a structure for an employee of an organization having employee code, name, address,
phone number and number of dependents. Assume that “allEmployees” is an array of
employees in ascending order on the employee code. Write a function to display the details
of an employee given its employee code

struct employee

{

int emp_code;

char emp_name[30];

char emp_address[50];

char emp_ph_num[10];

int no_of_dep;

}allEmployees[100],b;

void display()

{

int ctr=0;

fp=fopen("employee.c","r");

rewind(fp);

while(fread(&allEmployees,sizeof(allEmployees[i]),1,fp)==1)

{

ctr++;

clrscr();

heading();

printf("\n\n\n\tFollowing are the details :-");

printf("\n\n\tRecord #%d",ctr);

printf("\n\n\t\tCode : %d",allEmployees[i].emp_code);

printf("\n\n\t\tName : %s",allEmployees[i].emp_name);

printf("\n\n\t\tAddress : %s",allEmployees[i].emp_address);

printf("\n\n\t\tPhoneNumber:%s",allEmployees[i].emp_ph_num);

printf("\n\n\t\tNumber of Dependents

:%s",allEmployees[i].no_of_dep);

printf("\n\n\n\n\t\tPlease Press Enter...");

getch();

}}

160

14. Write a C program to find sum of n elements entered by user. To perform this program,

allocate memory dynamically using calloc() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int n,i,*ptr,sum=0;

 printf("Enter number of elements: ");

 scanf("%d",&n);

 ptr=(int*)calloc(n,sizeof(int));

 if(ptr==NULL)

 {

 printf("Error! memory not allocated.");

 exit(0);

 }

 printf("Enter elements of array: ");

 for(i=0;i<n;++i)

 {

 scanf("%d",ptr+i);

 sum+=*(ptr+i);

 }

 printf("Sum=%d",sum);

 free(ptr);

 return 0;

}

15. Write a C program to swap numbers in cyclic order using call by reference.

#include<stdio.h>

void Cycle(int *a,int *b,int *c);

int main(){

 int a,b,c;

 printf("Enter value of a, b and c respectively: ");

 scanf("%d%d%d",&a,&b,&c);

 printf("Value before swamping:\n");

 printf("a=%d\nb=%d\nc=%d\n",a,b,c);

 Cycle(&a,&b,&c);

 printf("Value after swaping numbers in cycle:\n");

 printf("a=%d\nb=%d\nc=%d\n",a,b,c);

 return 0;

161

}

void Cycle(int *a,int *b,int *c){

 int temp;

 temp=*b;

 *b=*a;

 *a=*c;

 *c=temp;

}

16. Write a C program to add two distances entered by user in feet-inch system. To perform
this program, create a structure containing elements feet and inch. [Note: 12 inch= 1feet]

#include <stdio.h>

struct Distance

{

 int feet;

 float inch;

}d1,d2,sum;

int main()

{

 printf("1st distance\n");

 printf("Enter feet: ");

 scanf("%d",&d1.feet);

 printf("Enter inch: ");

 scanf("%f",&d1.inch);

 printf("2nd distance\n");

 printf("Enter feet: ");

 scanf("%d",&d2.feet);

 printf("Enter inch: ");

 scanf("%f",&d2.inch);

 sum.feet=d1.feet+d2.feet;

 sum.inch=d1.inch+d2.inch;

//If inch is greater than 12, changing it to feet.

 if (sum.inch>12){

 ++sum.feet;

 sum.inch=sum.inch-12;

 }

 printf("Sum of distances=%d\'-%.1f\"",sum.feet,sum.inch);

 return 0;

}

162

 SUMMARY

• Pointer variable represents the address of a data item.

• The pointer variable might be belonging to any of the data type such as int, float, char,

double, short etc.

• A pointer that is assigned NULL is called a null pointer.

• Two pointer variables can be compared provided both points to objects of same type.

• When a pointer is incremented, its value is incremented by the length of the data type it

points to.

• In an array, the name of an array stands for the address of its zeroth element. Similarly struct

variable represents the address of its first element.

• Instead of using ‘*’, ‘.’ and parenthesis, the - > operator. (arrow operator.) can be used.

• A pointer pointing to a structure just the same way a pointer pointing to an int, such pointers

are known as structure pointers.

• Using the pointer, the memory location can directly be accessed.

• & (address of 0 and * (indirection operator) are the two operators used in pointer related

operations.

• Pointer variables can be used in expressions.

• Addition of two pointers, multiplication, and division of the pointer with a number is not

allowed.

• Array elements can be accessed through the pointers quickly.

• Pointers can be passed in the function as an argument.

• Like any other return type, functions can also return the pointers.

• The process of allocating memory at run time is known as dynamic memory allocation.

Dynamic memory management technique is used to optimize the use of storage space.

• malloc() , relloc(), calloc() and free are used in dynamic memory allocation.

• The name malloc stands for "memory allocation". This function is used to allocate a block of

memory. The required amount of byte should be specified as argument to the function. After

allocating memory in the heap (free memory) the function returns the starting address of the

block of memory allotted.

• The storage space allocated dynamically has no name and therefore its contents can be

accessed only through a pointer.

• free() is used to deallocate the memory. The release of storage space is important when the

storage is limited. When data stored in a block of memory is not needed, then release that

portion of the memory.

• by default the memory allocated by malloc() contains garbage values whereas that allocated

by calloc() contains all zeros.

• While malloc allocates a single block of storage space, calloc allocates multiple block of storage,

each of the same size, and then sets all bytes to zero.

• The name calloc stands for "contiguous allocation" calloc function is used when requesting

memory space at run time for storing derived data types such as arrays and structure..

• This function is used to change the memory size previously allocated. The space may be

increased or decreased.

163

 REVIEW QUESTIONS AND PROGRAMS

SUMMARYPART PAPART - A (2 Marks Questions)

1. What are pointers?

2. Explain the use of (*) indirection operator.

3. How to declare pointer variable? Give an example.

4. What are the two operators associated with the pointer variable?

5. Why is the addition of two pointers impossible?

6. Which arithmetic operations are possible with pointers?

7. How is a pointer initialized?

8. What is the result of adding an integer to a pointer.

9. What is the purpose of realloc() function?

10. What is the need for dynamic memory allocation?

11. What are the functions used in dynamic memory allocation?

12. What is a scale factor? Write down the scale factor of int, float and char data types?

PAPART - B (3 Marks Questions)

1. Write down the advantages of pointers?

2. What is NULL pointer? Is it the same as an uninitialized pointer?

3. What is an array of pointer? How is it declared?

4. Distinguish between (*m) [5] and *m [5]

5. Differentiate between p and *p.

6. Differentiate between calloc(0 and malloc(0 function in C.

7. How to pass the whole array to the function?

8. Why we have to release the memory and how?

9. What are the advantages and limitations of storing strings in an array of pointers ?

PAPART - C (5 or 10 Marks Questions)

1. What are pointers? Why are they needed? Explain with an example.

2. Explain the relation between array and pointer. Give an example.

3. Write a program using pointers to read in an array of integers and print its elements

in reverse order.

164

4. Briefly explain about pointer arithmetic.

5. Explain the role of pointers in strings with examples.

6. How do we use arrauy of pointers/ Explain.

7. Explain call by reference with a C program.

8. Write a program to reverse the characters of a string using pointers.

9. Write a C program to find the length of the string using a pointer.

10. Write a C program to find the average of elements of an array using pointers.

11. What do you understand by a pointer to a pointer/ Can this be extended to any level?

Explain.

12. Explain the various functions used in dynamic memory management.

13. Explain the use of pointers in handling arrays and structures.

14. How can array of string pointers be initialized? Illustrate your answer with an

example,

165

UNIT – V

FILE MANAGEMENT AND PREPROCESSORS

OBJECTIVES

 At the end of the unit, the students will be able to

• Define the term “File”

• Understand the functions used in opening, closing , reading and writing a file.

• Learn the Input/output operations on files.

• Get acquaintance with the error handling during I/O operations.

• Differentiate Random access with sequence access of files.

• Learn the syntax and usage of functions used in random access.

• Write programs using files.

• Introduce command line arguments.

• Develop programs using command line arguments.

• Understand preprocessor.

• Learn about the different types of pre processor directives.

INTRODUCTION

When the program is terminated, the entire data is lost in C programming. For permanent storage of

data, it is required to use files and read it from them. C language supports number of functions that

have the ability to perform the basic file operations. C Pre-processor is a collection of special

statements, called, directives, that are executed at the beginning of the compilation process.

This unit will discuss about the various operations that can be performed on files, concept of command

line arguments and preprocessor

5.1. FILE MANAGEMENT

 5.1.1. INTRODUCTION

Files are used to store a large amount of data in a disk. Handling of large volume of data through

keyboards has the following disadvantages:

1. It is time consuming.

2. The entire data is lost when either the program is terminated or when the power is turned

off.
A file is a group of related data, stored on the disk.

166

 5.1.2. DEFINING AND OPENING A FILE

Before using any files, it must be opened properly. Opening a file establishes a link between the

program and the operating system, about, which file we are going to access and how. The link between

our program and the operating system is structure called FILE, which has been defined, in the header

file "stdio.h" (standard Input Output header file). Also the purpose of opening the above file should

also be defined. The purpose may be either reading, writing or appending data.

The function fopen() is used for opening a file. The general format for defining and opening a file is

as follows.

FILE *ptr;

ptr = fopen(“filename”, “mode”);

where FILE is a defined data type. Data structure of a file is defined as FILE. It is not necessary to

define this structure. The FILE is a type of structure, which has been defined in the header file stdio.h.

Each file will have its own FILE structure. The FILE structure contains information about the file being

used, such as its current size, its location in memory etc . So all the files should be declared as type

FILE before they are used. This structure is defined only in uppercase letters. Do not use file or File

instead of FILE.

ptr is a pointer variable containing the address of the structure FILE. ptr is a pointer to the data type

FILE.

The second statement opens the file indicated as filename and assigns an identifier to the FILE type

pointer ptr. “mode” part is used to indicate the purpose for which the file is being opened. The value

of “mode” can be any one of the following.

Mode Purpose Action

“r” Read from the file This mode searches the disk for the filename. If it exists, then it is

loaded from disk into the memory and a pointer returned to the file;

otherwise, an error occurs and returns NULL value. NULL indicates that

there will be a failure in opening the file.

“w” Write data into

the file.

A file with a specified name is created, if the file does not exist. If the

file already exists, its contents are deleted. If it is unable to open the

file, it returns NULL.

“a” Append data to

the file.

If the file already exists, it is opened so that data may be added. If the

file does not exist, it is created. If It is unable to open the file, it returns

NULL.

r+ - Opens a text file for reading and writing both

w+ - Opens a text file for reading and writing both. It first truncate the file

to zero length if it exists otherwise create the file if it does not exist.

167

a+

- Opens a text file for reading and writing both. It creates the file if it

does not exist. The reading will start from the beginning but writing

can only be appended.

Trouble in file opening :

The fopen() function for opening file for read/write operations may fail due to anyone of the following

reasons:

• A file for reading may not be present on the disk
• Insufficient disk space for opening a for writing.
• Write protected disk does not allow storage of data on it.
• Dealing with a corrupt file

Example

FILE *ptrf;

ptrf = fopen (“exam.dat”, “r”);

The above two statements are used to open the file “exam.dat” for reading and the pointer ptrf

returning a pointer. If the file “exam.dat” does not exist, an error will occur and the value NULL is

assigned to ptrf.

The following program is used to display the error message if the file could not be opened due to some

reasons.

#include <stdio.h>

main()

{
FILE *ptrf;
ptrf = fopen(“exam.dat”,”r”);
if (ptrf == NULL)
{
 printf(“ File could not be opened \n”);
 exit (0);
}

}

A number of files can be opened at a time.

Difference between Append and Write Mode :

Write (w) mode and Append (a) mode, while opening a file are almost the same. Both are used to

write in a file. In both the modes, new file is created if it doesn't exists already. The only difference

they have is, when opening a file in the write mode, the file is reset, resulting in deletion of any data

already present in the file. While in append mode this will not happen. Append mode is used to append

or add data to the existing data of file (if any). Hence, when opening a file in Append(a) mode, the

cursor is positioned at the end of the present data in the file.

168

 5.1.3. CLOSING A FILE

A file must be closed immediately after finishing all the operations on the above file. The purposes of

closing a file is as follows:

1. To flush the information from the buffers of the memory.

2. To break all the links to the file.

3. To prevent the accidental movement of the file.

4. To reopen the same file in a different mode.

The general format for closing a file is

fclose (ptrf) ;

The above statement close the file associated with the FILE pointer (ptrf). Once a file is closed, its file

pointer can be reused for another file.

Example

FILE ptrf1, ptrf2;

ptrf1 = fopen(“exam.dat”, “r”);

ptrf1 = fopen(“result.dat”, “w”);

fclose (ptrf1) ;

fclose (ptrf2) ;

The above program opens two files and closes them after all operations are completed.

 5.1.4. INPUT/OUTPUT OPERATIONS ON FILES

Reading from a file (getc() function)

Once the file has been opened for reading using fopen(), the file's contents are brought into memory

(partly or wholly) and a pointer points to the very first character. To read the file's contents from

memory there exists a standard library function called getc().

getc() function is used to read a character at a time from the file. When a file is opened, the file

pointer provides access to the first character written on the file.

The functions getc() reads one character from current pointer position,. This character is then

assigned to variable and advances the pointer position so that it points to the next character. Once

the file has been opened, it is referred by file pointer ond file name is no longer valid.

getc() function stops the reading process when the end of file is reached. The end of file can be

checked by checking for EOF.

For example, the statement

 ch = getc(fp1);

read a character from the file whose file pointer is fpl. The above character is stored in the variable

ch. getc() and fgetc() are both same.

169

Program 1 : Write a program to read file and print the contents on the screen.

#include<stdio.h>

main()

{

 FILE*fp; char ch;

 char filename[12];

 printf("\n\nEnter the filename to read:");

 scanf("%s",filename);

 fp=fopen(filename,"r");

 do

 {

 ch=fgetc(fp);

 printf("%c",ch);

 } while(ch!=EOF);

 fclose(fp);

 getch(); }

Program 2 : Read a file called “bio.dat” and count the number of characters in it.

#include<stdio.h>

main()

{

 FILE*fp;

 int count=0;

 char ch;

 fp=fopen("bio.txt","r");

 do

 {

 ch=fgetc(fp);

 count++;

 } while(ch!=EOF);

 printf("\n\nThe no. of characters in a file is:%d",count);

 printf("\n including EOF character");

 fclose(fp);

 getch(); }

Writing into a file (putc() function)

putc() function is used to write a character into a file. The statement

 putc(c, ptrf);

write the character contained in the character variable c to the file associated with FILE pointer ptrf.

The end of file is marked by EOF. This EOF can be placed at end of file through ^ z(ctrl + z). putc() and

fputc() are same.

170

Program 3 : Create a text file called “self.dat”.

#include<stdio.h>

main() {

 FILE*fp;

 char ch;

 clrscr();

 fp=fopen("self.txt","w");

 do {

 ch=getche();

 putc(ch,fp);

 } while(ch!=13);

 fclose(fp); }
The getw() and putw() function

The getw() and putw() are integer oriented functions. These two functions are used to read and write

integer values. These functions are useful when handling only integer data. The general format of

getw and putw function are

getw(ptrf); putw(integer, ptrf);

Program 4 : Create a file “data.dat” which contain 10 integer numbers. From the above

file create another file, which contains only odd numbers, and print the contents of this

file.

#include<stdio.h>

main(){

 FILE *fp1,*fp2;

 int num,i;

 clrscr();

 fp1=fopen("data.txt","w");

 for(i=0;i<10;i++)

 {

 scanf("%d",&num);

 putw(num,fp1);}

 fclose(fp1);
 fp1=fopen("data.txt","r");

 fp2=fopen("odd.txt","w");

 while((num=getw(fp1))!=EOF)

 if((num%2)!=0)putw(num,fp2);

 fclose(fp1);

 fclose(fp2);

 fp1=fopen("data.txt","r");

 clrscr();

 printf("All Numbers - data.dat\n\n");

 while((num=getw(fp1))!=EOF)

 printf("%d",num);

 fp2=fopen("odd.txt","r");

 printf("\n\nOdd Numbers-odd.dat\n\n");

 while((num=getw(fp2))!=EOF)

 printf("%d",num);

 fclose(fp1); fclose(fp2); }

171

 5.1.5. FORMATTED FUNCTIONS (fprintf() AND fscanf())

getc(), putc(), getw() and putw() function can handle one character or integer at a time. But the

functions, fprintf () and fscanf () can handle a group of data simultaneously.

These two functions perform input/output operations that are identical to printf and scanf functions.

But these two functions work on files.

The parameters to these functions are similar to printf and scanf. But one more additional parameter,

FILE pointer specifying the file, is added to these functions. The first argument of these functions is a

file pointer, which specifies the file to be used.

fprintf()

The general format of fprintf statement is

fprintf(ptrf, “control_string”, list);

where ptrf is the file pointer for the file that has been opened for writing. The control string specifies

the output format for the various items in the list.

The list may contain variables, constants or strings.

Examples

fprintf(ptrf1, “%s %d %d ”, name , age , salary);

fprintf(ptrf1, “%2f %d %d ”, price , quantity, product_name);

fscanf()

fscanf reads characters from the specified file, converts them as per directions given in control string

format. Then the converted value is assigned to the objects pointed by the list of arguments. The

general form is

fscanf(ptrf, “control_string”, list);

Examples

fscanf(ptr3, “%s %d %d ”, &name , &age , &salary);

fscanf(ptrf1, “%f %d %d ”, &price , &quantity, &product_name);

The function returns the value EOF if an input failure occurs.

Program 5: Write a c program to get inputs as name, roll no, age and native place from

the keyboard and store the details in a data file. Also read the file and display formatted.

#include<stdio.h>

#include<string.h>

main()

172

{

 FILE*fp;

 char filename[12];

 char name[30],rollno[5],nat_place[20],ch;

 int age,i,end;

 clrscr();

 printf("Enter the filename to read and write:");

 scanf("%s",filename);

 fp=fopen(filename,"w");
 do

 {

 clrscr();

 printf("Enter the name,rollno,age and native place::\n");

 fscanf(stdin,"%s%s%d%s",name,rollno,&age,nat_place);

 fprintf(fp,"%s%s%d%s",name,rollno,&age,nat_place);

 fflush(stdin);

 printf("\n\nDo U want to continue?");

 ch=getch();

 } while((ch=='y')||(ch=='Y'));

 end = ftell(fp);

 fclose(fp);

 fp=fopen(filename,"r");

 printf("\n\nName\t\tRollno\tAge\tNat_Place\n\n");
 while(ftell(fp)<end)

 {

 fscanf(fp,"%s%s%d%s",name,rollno,age,nat_place);

 fprintf(stdout,"%-30s\t%-5s\t%5d\t%-20s\n",name,rollno,age,nat_place);

 }

 fclose(fp);

}

 5.1.6. ERROR HANDLING DURING I/O OPERATIONS

An error may occur during input / output operations on a file. Some of the situations in which the

error occurs are as follows.

1. When reading the data beyond the EOF mark.

2. Device overflow (i.e., no space in disk)

3. Not opening of files.

4. Trying to perform an operation on a file, when the file is opened for another type of

operation. For example it is not possible to perform read operation, when the file is opened

for write operation.

5. Opening a file with an invalid file name.

Two library functions feof and ferror is used to detect I/O errors in the files.

feof()

This function is used to test for an end of file condition. This function has only one argument. This

argument is a FILE pointer. This function returns a non-zero integer value if all the data from the

specified file has been read. Otherwise it returns zero. For example, the statements

if(feof(ptrf));

printf (“ End of file”);

displays the message “End of file”, on reaching the end of file condition.

173

ferror()

This function is used to report the status of the file specified. This function also takes only one

argument, FILE pointer. This function returns a non-zero integer if an error has been detected upto

that point during processing. Otherwise, it returns zero. For example, the statements

if(ferror(ptrf)!=0);

printf (“ There will be an error”);

display the message “There will be error”, if the reading is not successful.

 5.1.7. RANDOM ACCESS FILES

Sequential and Random Access File Handling in C

In computer programming, the two main types of file handling are:

• Sequential;

• Random access.

Sequential files are generally used in cases where the program processes the data in a sequential

fashion – i.e. counting words in a text file – although in some cases, random access can be feigned by

moving backwards and forwards over a sequential file.

True random access file handling, however, only accesses the file at the point at which the data should

be read or written, rather than having to process it sequentially.

In random access mode, it is possible to access only a particular part of a file. The functions available

for random access operations are (i)fseek (ii) ftell and (iii) rewind.

To access the forty fourth record then first forty three record read sequentially to reach forty four

record . In random access data can be accessed and processed directly .There is no need to read each

record sequentially . To access a particular record in a random access takes less time than the

sequential access

The ftell() function

This function returns the current offset position in the file. For example, as soon as a file is opened,

this function returns 0. this function is used to save the current position of a file, which can be used

later in the program. The general format is

 long int position = ftell(ptrf);

where position would give the relative offset (in bytes) of the current position.

174

The rewind() function

This function resets the pointer position to the beginning of the file. For example, the statements

 rewind(ptrf);

 position = ftell(ptrf);

assigns the value 0 to position. The first byte in the file is numbered as 0, second as 1 and so on.

This function is used to read a file more than once, without having to close and open the file.

fseek () function

After performing an input or output operation on a file, the pointer is shifted to the next position in

the file. The “current position” is the position at which data will be read from in an input operation or

written to in an output operation. When a file is opened, the “current position”, is always at the

beginning of the file.

fseek function is used to move the file position to a desired location. The general format of fseek

function is

fseek(fileptr, offset,

from_whwre);

 where file-ptr is a pointer to the file concerned. Offset is a long integer that specifies the number of

bytes that have to be shifted. from_ where is an integer specifying the position on the file from

where the offset would be effective. from_where can take one of the following three values.

Value Meaning

0 Offset is effective from beginning of file

1 Offset is effective from the current position

2 Offset is effective from end of file

The offset may be positive or negative. If it is positive, the pointer moves forwards. If it is negative

the pointer moves backwards.

Examples

fseek(fp,0L,0) - beginning of the file (similar to rewind)

fseek(fp,0L,1) - atay at current position

fseek(fp,0L,2) - Go to the end of the file

fseek(fp,m,0) - Move to (m+1) th byte in the file.

when the operation is successful, fseek returns 0; otherwise it returns 1.

Example

fp = fopen (“mark.dat”, “r”);

fseek (fp,0,0);

0 1 2 3 4 5 6 7 8 9 ……. …..

175



fseek (fp,5,0)

0 1 2 3 4 5 6 7 8 9 ……. …..

 

fseek(fp, -2,1)

0 1 2 3 4 5 6 7 8 9 ……. …..

 

Current position shifted by – 2 bytes.

Program 6 : Write a program that displays the content of a file in reverse order.

#include<conio.h>

#include<stdio.h>

main()

{

 FILE *fp;

 char ch;long int pos;

 clrscr();

 fp=fopen("s","r");

 pos=ftell(fp);

 fseek(fp,-1,2);

 while(ftell(fp)>pos)

 {

 ch=fgetc(fp);

 printf("%c",ch);

 fseek(fp,-2,1);

 }

 ch=fgetc(fp);

 putchar(ch);

 fclose(fp);

 getch(); }

In the above program, the statement (fp, -1,2) is used to move the file pointer to the last character.

Since every read/write operation moves the file pointer forward by one position, the file pointer is

moved back by two positions to read a next character. This is achieved by the statement feek(fp-2,1).

 FILE PROGRAMS

Write a C program to find a read a text file and copy it to other file such that each word comes in

separate lines.

#include<conio.h>

#include<stdio.h>

main()

176

{

FILE *fp1,*fp2;

char infile[12],outfile[12],ch;

clrscr();

printf("Enter the file name to read:");

scanf("%s",infile);

printf("Enter the file name to write ");

scanf("%s",outfile);

fp1=fopen(infile,"r");

fp2=fopen(outfile,"w");

do{

ch=fgetc(fp1);

if(ch==' ')

fputc('\n',fp2);

else

fputc(ch,fp2);

}

while(ch!=EOF);

fclose(fp1);

fclose(fp2);

}

Write a program to convert lowercase text file to uppercase text file.

#include<conio.h>

#include<stdio.h>

main()

{

FILE *fp1,*fp2;

char lowerfile[12],upperfile[12],ch;

clrscr();

printf("Enter the file name to read:");

scanf("%s",lowerfile);

printf("\nEnter the file name to write :");

scanf("%s",upperfile);

fp1=fopen(lowerfile,"r");

fp2=fopen(upperfile,"w");

do{

ch=fgetc(fp1);

if((ch>='a')&&(ch<='z'))fputc(ch-32,fp2);

else

fputc(ch,fp2);

}while(ch!=EOF);

fclose(fp1);

fclose(fp2);

getch();

}

177

Write a Program to remove all the comment lines in a C program.

#include<conio.h>

#include<stdio.h>

void main(int arg ,char *argv[])

{

 FILE *fp,*tmp;

 char comment[3],ch;

 int flag=1,f1,i,pt=0;

 int start ,end;

 fp=fopen(argv[1],"r");

 tmp=fopen("temp","w");

 start=ftell(fp);

 fseek(fp,-1,2);

 end=tell(fp);

 f1=end-start;

 for (i=0;i<f1;i++,pt++)

 {

 fseek(fp,pt,0);

 fgets(comment,3,fp);

 if(strcmp(comment,"*/")==0)flag=0;

 else if(strcmp(comment,"*/")==0)

 {

 flag=1;

 pt=ftell(fp)+2; /*for avoid \n character*/

 }

 if(flag)

 {

 fseek(fp,pt,0);

 ch=fgetc(fp);

 if(ch=='\n')

 pt++;

 fputc(ch,tmp);

 }

 }

 fclose(fp);

 fclose(tmp);

 }

Write a C program to read from the keyboard and write the following data pertaining to the

supply of stores in a binary file using function and write();

Supplier Address Part No Qunatity

Ram Bros 12, Anna Salai 2345 45

SPK 345, Patel Road 567 78

178

Use a structure for the fields in each record. Write a function to display the data on the screen

#include<stdio.h>

#include<conio.h>

struct supplier

{

char name[20];

char addr[30];

int partno;

int qty;

}supp;

main() {

FILE *fp;

char filename[12],ch;

int i,end;

clrscr();

printf("Enter the file name to write and read:");

scanf("%s",filename);

fp=fopen(filename,"w");

do

{

clrscr();

printf("Enter the supplier name ,address,partno,quantity:\n");

fscanf(stdin," %s %s %d %d " ,supp.name,supp.addr,&supp.partno,&supp.qty);

fprintf(fp,"%s %s %d %d\n",supp.name,supp.addr,supp.partno,supp.qty);

fflush(stdin);

printf("\n\n Do you want to continue?");

ch=getche();

}while((ch=='y')||(ch=='Y'));

end =ftell(fp);

fclose(fp);

fp=fopen(filename,"r");

printf("\n\n Supplier\tAddress \tPartno\tQuantity\n\n");

while(ftell(fp)<end)

{

fscanf(fp,"%s%s%d%d",supp.name,supp.addr,&supp.partno,&supp.qty);

fprintf(stdout,"%-20s\t%-30s%5d%5d\n",supp.name,supp.addr,&supp.partno,&supp.qty);

}

fclose(fp);

getch(); }

179

5.2. COMMAND LINE ARGUMENTS

It is possible to pass some values from the command line to C programs when they are executed.

These values are called command line arguments and many times they are important to control the

program. Command line arguments are parameters. These parameters are supplied to a program

when the program is executed. The first parameters may represent a file name the program should

process.

main() function can also take arguments like other functions. main() can take two arguments. So

when main is called, it is called with two arguments. They are argc and argv. The information

contained in the command lines is passed onto the program through these arguments.

The argc is called as an “argument counter” and it represents the number of command line arguments.

The argv is an argument vector, is a pointer to an arrays of character strings that containing the

arguments, one per string. The size of this array will be equal to the value of argc.

The c in argc stands for counter and v in argv stands for vector.

In order to access the command line arguments, main function is declared as follows:

main (int argc, char *argv[])

{

}

The first parameter in the command line is always the program name. Therefore argv[0] represents

the program name.

Example

Assume that there is a program called “display” which displays whatever input string is fed to it. The

following program is invoked with the command line argument “display Good morning to everybody”.

Then the following program displays the message “Good morning to everybody”.

main (int argc, char *argv[])

{

 int i = 1;

 while (-- argc>0)

 {

 printf (“%s”, argv[i]);

 if (i<argc-1)

 printf(“\n”);

 else

 printf(“ “);

 }

}

OUTPUT:

C:\TC\BIN > display Good morning to everybody

Good morning to everybody

When the command is processed, the value of argc is 5.

180

 Argv Array of strings

. 0 Display\0

 1 Good\0

 2 morning\0

 3 to\0

 4 everybody\0

 5 NULL

argv[0] is always the name of the program and argv[argc] is NULL.

C Program to Add two numbers using Command Line Arguments

#include<stdio.h>

 void main(int argc, char * argv[])

{

 int i, sum = 0;

 if (argc != 3) {

 printf("You have forgot to type numbers.");

 exit(1);

 }

 printf("The sum is : ");

 sum = sum + atoi(argv[1]) + atoi(argv[2]);

 printf("%d", sum);

 }

Write a Simple Calculator program using command line arguments

#include<stdio.h>

#include<conio.h>

int main(int argc, char *argv[]) {

 float result = atoi(argv[1]);

 int i;

 for (i = 3; i < argc; i = i + 2)

 switch (*argv[i-1]) {

 case '+':

 result = result + atoi(argv[i]);

 break;

 case '-':

 result = result - atoi(argv[i]);

 break;

 case '*':

 result = result * atoi(argv[i]);

 break;

 case '/':

181

 result = result / atoi(argv[i]);

 break;

 default:

 printf("Wrong Input");

 }

 printf("\nResult = %f", result);

}

Write a program to copy the contents of one file to another file (Read file names

using command line arguments).

#include <stdio.h>

main (int argc, char *argv[]);

{

 FILE *fp1, *fp2;

 char ch;

 fp1 = fopen(argv[1], “r”);

 fp1 = fopen(argv[2], “w”);

 do

 {

 ch = fgetc(fp1);

 fputc(ch, fp2);

 } while(ch != EOF);

 printf (“File copied”

 fclose(fp1);

 fclose(fp2);

}

5.3. PREPROCESSOR

 5.3.1. INTRODUCTION

Preprocessor processes the source code before the compilation begins. The preprocessor is invoked

automatically by the C compiler.

In C program, commands or instructions to the C compiler can be included. These are called

preprocessor directives. Every preprocessor directive must begin with the character #. Preprocessor

directive do not require a semicolon at the end. Preprocessor directives are placed in the source

program before the main function.

Preprocessor directives can be subdivided into

• Macro definition and substitution

• File inclusion.

• Compiler controlled directives.

182

 5.3.2. MACRO DEFINITION DIRECTIVES

In macro substitution, an identifier is replaced by a string. The preprocessor accomplishes this task

with the help of define statement. The general form of define statement is

define macro_name macro body

The above statement is used to replace the macro_name wherever it occurs in the program by the

string of the macro_body. Macro_name is generally written in uppercase letters.

The #define directive defines an identifier and a string/constant that is substituted in place of the

identifier name each time it is encountered in the file. This identifier is called macroname and the

replacement process is known as macro substitution.

There is no need of a semicolon after the statement having a #define directive.

Advantages of of #define statement :

1. It helps in generation of faster and compact code.

2. It saves the programmer’s time.

3. It reduces the chances of inconsistency within the program.

4. It makes the modification easier, as the value has to be changed only at one place in the

program i.e., it increases the flexibility of the program

Macro Substitutions

Simple macro substitution is commonly used to define constants

Examples

define PI 3.14

define PLACE “ SALEM”

define SUM 0

Expressions can also be included in macro definition

For example,

define AREA 10 * 25.5

define THREE _PI 3 * 3.1

are also valid . Following examples are also the correct macro definitions.

define EQUALS ==

define AND &&

define OR ||

define NOT_EQUAL !=

define INCREMENT ++

Then the following statement

if (age EQUALS 25 AND height NOT_EQUAL 50) INCREMENT count; is also valid.

183

Macro with arguments

Macros with arguments takes the following form

define variable name(a1,a2……..an), string

There should not be any space between variable name and the left parentheses. The arguments a1,

a2, are formal macro arguments.

Example

#define square (A) (A*A)

if the following statement appears late in the program

AREA = square(side);

Then the above statement is equivalent to : AREA = side * side;

Example

define MAX (X,Y)(((X) >(Y))?(X:Y))

define MIN(A,B)(((A)<(B)) ? (A):(B))

define ABS(X) (((X)>0) ? (X)-X)))

Example

#define AREA(x) (3.14 * x* x)

main()

{

float r1 = 6.25, r2 = 2.5 , a;

a =AREA (r1) ;

printf ("Area of circle = %f\n", a) ;

a = AREA (r2) ;

printf ("Area of circle = %f", a) ;

getch();

}

Difference between functions and macros in C

• Macro templates are replaced by macro expansion by preprocessor.
Whenever function is called, execution goes to that function, calculations are performed and
execution returns to main.

• Macros are faster than functions.

• In macros program size increases if called for more times.

• In function program remains compact even though called for several times.

• No address is associated with macro identifier and hence pointers cannot be used with
macros.

• When we pass the arguments to the macro, it never checks for their data types and checks for
only the number of arguments

http://lernc.blogspot.in/2009/12/difference-between-functions-and-macros.html

184

Undefining a Macro

undef directive is used to undefine a defined directive. The statement

undef macro_name

cause the previous preprocessor directive with this macro_name to lapse. From this point onwards,

the previous definition will not hold good. undef is useful when restricting the definition only to a

particular part of the program,

Major advantage of using macro is to increase the speed of the execution of the program.

Disadvantages of Macros

• No type checking is performed in macro. This may cause error,

• A macro call may cause unexpected results.

 5.3.3. FILE INCLUSION

External files containing function or macro definitions can be inserted into the program by the

preprocessor directive include. The general format for include directive is

include “filename”, (or) # include <filename>

Where filename is the name of the file to be inserted. The preprocessor inserts the entire contents

into the source code of the program.

When the file name is within the double quotation marks, the file is first searched in the current

directory and then in the standard directories. When the file name is within a pair of angle brackets,

the file is searched only in the standard directories.

 5.3.4. CONDITIONAL COMPILATION

Compiling the selected portion of the program for a particular condition is called “conditional

compilation”. Conditional compilation directives are (i) ifdef (ii) ifndef (iii) #if #else #endif directive
ifdef

The #ifdef feature is used to remove sections of codes automatically. For example,

ifdef LABEL

 {

 Block _ 1

 }

else

 {

 Block _2

 }

endif

Block 1 will get compiled only if LABEL has been # defined. If LABEL has not been defined as a macro,

the Block1 won’t be sent for compilation at all. Block 2 will get compiled.

185

For example, assume a single program can be compiled by two different makes of computer. The

following single program conditionally compiles only the code pertaining to either of the two

machines.

main()

{

ifdef MACINTOSH

 {

 code for MACINTOSH

 }

else

 {

 code for IBM

 }

endif

}

ifdef means “if defined”. The above program would run smoothly on a MACINTOSH as well as IBM. If

MACINTOSH has been defined, then the above program will run on MACINTOSH computer. Otherwise

it will run on IBM computer. For running the above program in Macintosh, the directive # define

MACINTOSH may be included.

Example

define SQR

main()

{ int i = 3;

ifdef SQR

 {

 printf (“Square of I = %d”, I*I);

 }

else

 {

 printf (“ i = %d”, i);

 }

endif

}

The output of the above program is 9.

ifndef directive

ifndef means “if not defined”. This directive works exactly opposite to the directive #ifdef. The general

form of this directive is

#ifndef macro_name

 statement 1;

186

#else

 statement2;

#endif

If there is no #define for macro_name, then statement1 will be executed otherwise statement2.

#if #else #endif directive

#if #else #endif directive tests an expression for non zero value and performs the conditional

compilation, The general form of this is:

if constant-expression

 Statement;

#else

 Statement2;

 PROGRAMS USING MACROS

Write a Macro to determine the absolute value of a numeric data and use the macro in

your program.

#include<stdio.h>

#include<math.h>

#define absolute(x) abs(x)

main()

{

 int num;

 clrscr();

printf(“\n Enter the number:”);

scanf(“%d”,&num);

printf(“\n The absolute value is:%d”,absolute(num));

}

Write a nested macro that gives the minimum of three values.

#include<stdio.h>

#include<conio.h>

#define min(a,b) ((a>b)?b:a)

#define minthree(a,b,c) (min(min(a,b),c))

void main()

{

int x,y,z,w;

clrscr();

printf("enter three numbers :\n");

scanf("%d%d%d",&x,&y,&w);

z=minthree(x,y,w);

printf("Minimum of three value is %d",z);

getch();}

187

 ADDITIONAL PROGRAMS

Write a program which accepts two file names from the command line and prints whether the

contents of the two files are same or not. If not, then print the first line number and then the

contents of the lines from which they differ. Assume that the lines in both the files have at most 80

characters.

#include<stdio.h>

main(int argc, char *argv[])

{

FILE *fp1, *fp2;

char ch1[80],ch2[80];

int i=1,j=1,l1=0,l2=0;

if (argc!=3)

{

printf ("\nWrong number of arguments.");

getch();

exit();

}

fp1=fopen(argv[1],"r");

if (fp1==NULL)

{

printf ("\nunable to open the file %s",argv[1]);

getch();

exit();

}

fp2=fopen(argv[2],"r");

if (fp2==NULL)

{

printf ("\nunable to open the file %s",argv[2]);

getch();

exit();

}

l1=0;

l2=0;

while (i!=0 && j!=0)

{

i=fgets(ch1,80,fp1);l1++;

j=fgets(ch2,80,fp2);l2++;

if (strcmp(ch1,ch2)!=0)

{

printf ("\nContents of both Files are not

Equal");

printf ("\nLine Number\tContents\tFile

188

name\n");

printf ("%d\t\t%s\t\tFrom %s",l1,ch1,argv[1]);

printf ("%d\t\t%s\t\tFrom %s",l2,ch2,argv[2]);

exit();

}}

if (i==0 && j==0)

printf ("\nBoth Files are equal");

else

printf("\nBoth files are not equal");

getch();

}

Write a C program to create a file contains a series of integer numbers and then reads all numbers

of this file and write all odd numbers to other file called odd and write all even numbers to a file

called even.

#include<stdio.h>

#include<conio.h>

void main()

{

FILE *f1,*f2,*f3;

int i,j;

printf("Enter the data\n");

f1=fopen("file1","w");

for(i=0;i<=10;i++)

{ scanf("%d",&j);

if(j== -1) break;

putw(j,f1);

}

fclose(f1);

f1=fopen("file1","r");

f2=fopen("od","w");

f3=fopen("ev","w");

while((j=getw(f1))!=EOF)

{ if(j%2==0)

putw(j,f3);

else

putw(j,f2);

}

fclose(f1);

fclose(f2);

fclose(f3);

f2=fopen("od","r");

f3=fopen("ev","r");

printf("\nContents of odd file\n");

189

while((j=getw(f2))!=EOF)

printf("%4d",j);

printf("\nContents of even file\n");

while((j=getw(f3))!=EOF)

printf("%4d",j);

fclose(f2);

fclose(f3);

getch();

}

Write a C program to read name and marks of n number of students from user and store

them in a file.

#include <stdio.h>

#include<conio.h>

int main(){

 char name[50];

 int marks,i,n;

 clrscr();

 printf("Enter number of students: ");

 scanf("%d",&n);

 FILE *fptr;

 fptr=(fopen("C:\\student.txt","w"));

 if(fptr==NULL){

 printf("Error!");

 exit(1);

 }

 for(i=0;i<n;++i)

 {

 printf("For student%d\nEnter name: ",i+1);

 scanf("%s",name);

 printf("Enter marks: ");

 scanf("%d",&marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n",name,marks);

 }

 fclose(fptr);

 getch();

 return 0;

}

Write a C program to read name and marks of n number of students from user and store

them in a file. If the file previously exits, add the information of n students.

#include <stdio.h>

#include<conio.h>

int main()

190

{

 char name[50];

 int marks,i,n;

 clrscr();

 printf("Enter number of students: ");

 scanf("%d",&n);

 FILE *fptr;

 fptr=(fopen("C:\\student.txt","a"));

 if(fptr==NULL){

 printf("Error!");

 exit(1);

 }

 for(i=0;i<n;++i)

 {

 printf("For student%d\nEnter name: ",i+1);

 scanf("%s",name);

 printf("Enter marks: ");

 scanf("%d",&marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n",name,marks);

 }

 fclose(fptr);

 getch();

 return 0;

}

191

 SU SUMMMARY

• A file a place on the disk where a group of related data is stored.

• For reading and writing on files, getc(0, putc(), getw() , puts() functions are used.

• Opening a file establishes a link between the program and the operating system, about, which

file we are going to access and how. The link between our program and the operating system

is structure called FILE, which has been defined, in the header file "stdio.h" (standard Input

Output header file).

• “r”s mode searches the disk for the filename. If it exists, then it is loaded from disk into the

memory and a pointer returned to the file; otherwise, an error occurs and returns NULL value.

NULL indicates that there will be a failure in opening the file.

• When opening a file in the write mode, the file is reset, resulting in deletion of any data already

present in the file. While in append mode this will not happen. Append mode is used to append

or add data to the existing data of file (if any). Hence, when opening a file in Append(a) mode,

the cursor is positioned at the end of the present data in the file.

• getc() function is used to read a character at a time from the file. When a file is opened, the

file pointer provides access to the first character written on the file.

• The getw() and putw() are integer oriented functions. These two functions are used to read

and write integer values.

• getc(), putc(), getw() and putw() function can handle one character or integer at a time. But

the functions, fprintf () and fscanf () can handle a group of data simultaneously.

• fprintf() and facanf() functions perform input/output operations that are identical to printf and

scanf functions. But these two functions work on files.

• Two library functions feof and ferror is used to detect I/O errors in the files.

• In random access mode, it is possible to access only a particular part of a file. The functions

available for random access operations are (i)fseek (ii) ftell and (iii) rewind.

• fFtell() function returns the current offset position in the file. For example, as soon as a file is

opened, this function returns 0.

• rewind() function resets the pointer position to the beginning of the file.

• When a file is opened, the “current position”, is always at the beginning of the file. fseek

function is used to move the file position to a desired location.

• The functions getc() reads one character from current pointer position,.

• For random access on files, the following functions are provided , namely , ftell, rewind and

fseek.

• When an existing file is open using “w” mode, the contents of file are deleted.

• EOF is an integer type with a value -1. Therefore, integer variable must be used for EOF.

• It is a good practice to close all file before terminating a program.

• In the command line parameters , the first parameters may represent a file name the program

should process.

• The argc is called as an “argument counter” and it represents the number of command line

arguments. The argv is an argument vector, is a pointer to an arrays of character strings that

containing the arguments, one per string.

• The c in argc stands for counter and v in argv stands for vector.

• Preprocessor processes the source code before the compilation begins. The preprocessor is

invoked automatically by the C compiler.

192

• Preprocessor directives can be subdivided into Macro definition and substitution , File

inclusion , Compiler controlled directives.

• The #define directive defines an identifier and a string/constant that is substituted in place of

the identifier name each time it is encountered in the file. This identifier is called macroname

and the replacement process is known as macro substitution.

• Macro templates are replaced by macro expansion by preprocessor.

Whenever function is called, execution goes to that function, calculations are performed and

execution returns to main.

• Major advantage of using macro is to increase the speed of the execution of the program.

• External files containing function or macro definitions can be inserted into the program by the

preprocessor directive include.

• Compiling the selected portion of the program for a particular condition is called “conditional

compilation”. Conditional compilation directives are (i) ifdef (ii) ifndef (iii) #if #else #endif

directive.

 REVIEW QUESTIONS AND PROGRAMS

PART – A (2 Marks)

1. What are the disadvantages of handling large volume of data through keyboards ?

2. Write down the general format for defining and opening a file.

3. What do you mean by file pointer?

4. What is the difference between write and append mode?

5. What do you understand by opening a data file? How is this performed?

6. Differentiate between the following : getw(0 and putw()

7. State the difference between getc() and fscanf() functions when handling data.

8. How to find the end of file?

9. What is the advantage of random file access methods?

10. What are the common uses of rewind and ftell functions?

11. What do the ‘c” and “v” in argc and argv stand for?

12. What is a preprocessor?

13. How the preprocessor directives can be sub divided?

14. What is a macro? What points to be considered while defining macros.

15. What are the advantage of #define statement?

16. What are the advantage of macros?

17. What do you mean by undefining a Macro?

193

18. State the difference between #include “stdio.h” and #include <stdio.h>

19. What is conditional compilation?

20. Give some examples for conditional compilation directives.

PART – B (3 Marks)

1. Describe various modes of opening a data file in C

2. Mention any three purposes for closing a file.

3. What are the functions associated with random access of a file?

4. Tabulate the differences between functions and macros

5. How to use ftell() function in a file program?

6. Explain #define directive.

7. What is conditional compilation? Give an example.

8. Distinguish between #ifdef and #if directives.

9. What is the difference between the statements rewind(fp); and fseek(fp,0L,0);?

PART – C (5/10 Marks)

1. Briefly explain about the Input / Output operations on files

2. List down the situations in which errors may occur.

3. What are the two functions used to detect I/O errors in the files? Explain them.

4. Explain the syntax and usage of functions used in random access of a file with examples.

5. Write a program in C to replace every uppercase letter with corresponding lowercase letters

and vice-versa in a file.

6. Write a C program to concatenate two text files.

7. Write a C program to copy a text file to another.

8. What is macro substitution? Explain with an example.

9. Explain macro with arguments with an example program

10. Define a macro CIRCUMFERENCE having argument r for finding the circumference of a circle.

Write a C program to use it in main() function.

11. Define a macro INTEREST having arguments p,r,and n for finding the simple interest. Write a

C program to use it in main () function to compute the simple interest for principal, rate and

time as 2000, 10.0, 12.0 respectively.

12. What is file inclusion? Explain.

13. Explain about conditional directives.

