
 

GOVERNMENT OF TAMILNADU 
DIRECTORATE OF TECHNICAL EDUCATION 

CHENNAI – 600 025 

 
STATE PROJECT COORDINATION UNIT 

 

Diploma in Computer Engineering 
 

Course Code: 1052 
 

M – Scheme 

 
e-TEXTBOOK 

on 

OBJECT ORIENTED PROGRAMMING  WITH JAVA 
for 

IV Semester DCOMP 
 

Convener for COMP Discipline:  
 

Mrs.A.Ghousia Jabeen,  
Principal,  
Thanthai Periyar E.V.Ramasamy  Govt. Polytechnic College for Women,  
Vellore – 632 002 
 

Team Members for Object Oriented Programming  With Java:  
 

Mr.M.Jeyapal,  
Lecturer/HOD incharge ,  
Department of Computer Engineering 
113, Government Polytechnic College,  
Aranthangi – 614616  
 
Mrs.N.Swarnalatha,  
Lecturer (Sr.Gr.),  
280, A.D.J. Dharmambal Polytechnic College,  
Nagapattinam – 641 042  
 
Mrs.K.Valarmathi,  
HOD incharge,  
Department of Computer Engineering 
225, S.Vellaichamy Nadar Polytechnic College,  
Virudhunagar – 626 001 

 

Validated By 

 

  Mr. V.G.Ravindhren 

  Lecturer(SG)/HOD incharge 

Seshayee Institute of Technology,  
Trichy- 620 010 



 

Curriculum Development Centre, DOTE. Page 68 
 

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU. 

DIPLOMA IN COMPUTER ENGINEERING 

M- SCHEME 

( to be implemented to the student Admitted from the Year 2015-2016 on wards) 

Course Name : Diploma in Computer Engineering. 

Subject Code : 35243 

Semester   :IV 

Subject title   : Object Oriented Programming with Java 

TEACHING & SCHEME OF EXAMINATION:   

No. of weeks per Semester  15 Weeks 

 
 
 

Subject 

Instructions Examination 
 
 

Duration  
Hours / 
Week 

Hours / 
Semester 

Internal 
Assessment 

Board 
Examination 

 
Total 

Object 
Oriented 

Programming 
with Java 

 
6 

 
90 

 
25 

 
75 

 
100 

 
3 Hrs 

 
UNITS AND ALLOCATION OF HOURS 

UNIT No. TOPIC No. of Hours 

I INTRODUCTION TO OOPS AND JAVA 15 

II CONTROL STRUCTURES, ARRAYS, AND VECTORS 13 

III STRINGS, CLASSES AND INTERFACES 18 

IV PACKAGES, APPLETS AND AWT CONTROLS 16 

V EXCEPTION HANDLING, MULTITHREADS AND I/O 
STREAMS 

18 

 TEST AND REVISION 10 

 TOTAL 90 

 

 

 

 

 



 

Curriculum Development Centre, DOTE. Page 69 
 

Rationale: 

Today almost every branch of computer science is feeling presence of object - orientation. Object 

oriented technology is successfully incorporated in various fields of computer science. Since its 

arrival on the scene in 1995, the Java has been accepted as one of the primary programming 

language. This subject is designed to give you exposure to basic concepts of object - oriented 

technology. This subject will help in learning to write programs in Java using object - oriented 

paradigm. Approach in this subject is to take Java as a language that is used as a primary tool in 

many different areas of programming work. 

 

Objectives: 

 

On completion of the following units of syllabus contents, the students must be able to 

 

 Know the paradigms of programming languages. 

 Understand the concepts of Object Oriented Programming. 

 State the benefits and applications of Object Oriented Programming. 

 Know the history of development of Java. 

 Comprehend the features and tokens of Java. 

 Explain about the control structures used in Java. 

 Use of Arrays and Vectors in Java Program. 

 Demonstrate the use of string and String Buffers. 

 Define Class with the attributes and methods. 

 Understand the need for interfaces. 

 Implement Interfaces in classes. 

 Create packages. 

 Write simple Applets. 

 List the types of AWT Components and types of exceptions. 

 Handle the errors using exceptions. 

 Understand the concepts of multithreading. 

 Develop multithreaded programs in Java. 

 Define stream and list the types of streams. 

 

DETAILED SYLLABUS 
 

UNIT I INTRODUCTION TO OOPS AND JAVA                                                    15 HOURS 

1.1 Introduction to OOPS: Paradigms of Programming Languages - Basic 

concepts of Object Oriented Programming – Differences between Procedure 

Oriented Programming and Object Oriented programming - Objects and 

Classes – Data abstraction and Encapsulation, Inheritance, Polymorphism, 

Dynamic binding, Message communication – Benefits of OOP – Application of 

OOPs. 

8 Hrs 



 

Curriculum Development Centre, DOTE. Page 70 
 

1.2 Java : History – Java features – Java Environment – JDK – API. 2 Hrs 

1.3 

Introduction to Java : Types of java program – Creating and Executing a 

Java program – Java Tokens: Keywords, Character set, Identifiers, Literals, 

Separator – Java Virtual Machine (JVM) – Command Line Arguments – 

Comments in Java program 

5 Hrs 

UNIT II CONTROL STRUCTURES, ARRAYS, AND VECTORS                            13 HOURS 

2.1 

Elements: Constants – Variables – Data types - Scope of variables – Type 

casting – Operators: Special operators – Expressions – Evaluation of 

Expressions 

5 Hrs 

2.2 

Decision making and Branching: Simple if statement – if – else statement – 

Nesting if – else – else if Ladder – switch statement – Decision making and 

Looping: While loop – do – While loop - for loop – break – labeled loop – 

continue Statement.  

5 Hrs 

2.3 

Arrays: One Dimensional Array – Creating an array – Array processing – 

Multidimensional Array – Vectors – ArrayList – Advantages of Array List over 

Array Wrapper classes  

4 Hrs 

UNIT III STRINGS, CLASSES AND INTERFACES                                                18 HOURS 

3.1 Strings: String Array – String Methods – String Buffer Class  3 Hrs 

3.2 

Class and objects: Defining a class – Methods – Creating objects – Accessing 

class members – Constructors – Method overloading – Static members – 

Nesting of Methods - – this keyword – Command line input   

7 Hrs 

3.3 Inheritance: Defining a subclass – Deriving a sub class – Single Inheritance – 

Multilevel Inheritance – Hierarchical Inheritance – Overriding methods – Final 

variables and methods – Final classes – Final methods - Abstract methods 

and classes – Visibility Control: Public access, Private access, friend, 

protected. Interfaces: Multiple Inheritance - - Defining interface – Extending 

interface - Implementing Interface - Accessing interface variables  

8 Hrs 

UNIT IV PACKAGES, APPLETS AND AWT CONTROLS                                     16 HOURS 

4.1 Packages: Java API Packages – System Packages – Naming Conventions – 

Creating & Accessing a Package – Adding Class to a Package – Hiding 

Classes   

4 Hrs 

4.2 Applets: Introduction – Applet Life cycle – Creating & Executing an Applet – 

Applet tags in HTML – Parameter tag – Aligning the display - Graphics Class: 

Drawing and filling lines – Rectangles – Polygon – Circles – Arcs – Line 

Graphs – Drawing Bar charts   

8 Hrs 

4.3 AWT Components and Even Handlers: Abstract window tool kit – Event 

Handlers – Event Listeners – AWT Controls and Event Handling: Labels – 

TextComponent – ActionEvent – Buttons – CheckBoxes – ItemEvent - Choice 

– Scrollbars – Layout Managers- Input Events – Menus   

4 Hrs 



 

Curriculum Development Centre, DOTE. Page 71 
 

UNIT–V  EXCEPTION HANDLING, MULTITHREADS AND I/O STREAMS          18 HOURS 

5.1 

Exception Handling: Limitations of Error handling – Advantages of 

Exception Handling - Types of Errors – Basics of Exception Handling – try 

blocks – throwing an exception – catching an exception – finally statement 

6 Hrs 

5.2 Multithreading: Creating Threads – Life of a Thread – Defining & Running 

Thread – Thread Methods – Thread Priority – Synchronization – 

Implementing Runnable interface – Thread Scheduling. 

7 Hrs 

5.3 I/O Streams: File – Streams – Advantages - The stream classes – Byte 

streams –Character streams 

5 Hrs 

 

TEXT BOOKS 

 

Sl.No. TITLE AUTHOR PUBLISHER Edition 

1 Programming with Java E. Balagurusamy TataMc-Graw Hill, 

New Delhi 

5th Edition 

2 Java, A Beginner's 

Guide 

Herbert Schildt Oracle Press 6th  Edition 

 



 

 

 

 

UNIT NO 

 

TITLE 

 

PAGE NOS 

 

 

 

 

UNIT – 1 

 

 

 

 

INTRODUCTION TO OOPS 

AND JAVA 

 

 

 

1 TO 17 

 

UNIT – 2 

 

 

 

 

CONTROL STRUCTURES, 

ARRAYS, AND VECTORS 

 

18 TO 41 

 

 

 

UNIT – 3 

 

 

 

 

 

STRINGS, CLASSES AND 

INTERFACES 

 

 

 

42 - 73 

 

 

UNIT – 4 

 

 

 

 

PACKAGES, APPLETS, AWT 

AND EVENT HANDLERS 

 

 

74 - 115 

 

 

UNIT – 5 

 

 

 

EXCEPTION 

HANDLING,MULTITHREADS 

AND I/O STREAMS 

 

 

116 - 130 

 



1 

 

UNIT I INTRODUCTION TO OOPS AND JAVA 
 

OBJECTIVES 
 
To understand the basic concepts of object oriented programming features 
To know about the applications and benefits of oops 
To learn the various paradigms of programming languages 
To learn and understand about java environment. 
To learn about the creation and execution of java program. 
 

1.1. Introduction to OOPS: 
 

1.1.1. Paradigms of Programming Languages 
Programming paradigms are a way to classify programming languages according to 

the style of computer programming. It provides model to the programmers to write programs. 
Some of the common paradigms are 
1. Monolithic Programming 
2. Procedural Programming 
3. Structured  Programming 
4. Object Oriented Programming  

Monolithic Programming 
Monolithic programming is otherwise called as unstructured programming. In this 

paradigm the whole problem is solved as a single block. All the data are global and there is 
no security. To share the codes lot of goto statements are used. This is suitable only for 
small problem. It is difficult to correct errors. 

ex : BASIC Language, Assembly Language. 
 

Procedural Programming: 
In procedural programming, the tasks are divided in to a number of subtasks 

according to their functions. These subtasks  are called procedures or methods. Any 
procedure can be called at any point during the program execution. The program has global 
and local data. Data moves freely from one procedure to another. Most of the procedure 
share common data. Procedural programming uses Top-Down programming Approach. 
Here the importance is given to algorithms. 

The main disadvantage of this paradigm is the difficulty in debugging and the 
identification of  the data  and its corresponding  procedure. 

ex : FORTRAN,Pascal. 
 

  
      
 
 
 
 
 
 
 
 
           ……… …….. 
 
 
 

 Fig :1.1. Procedural programming 

Main program 

(Global data + Local Data) 

Procedure -1 

(Local Data) 

Procedure -2 

(Local Data) 

 

Procedure- n 

(Local Data) 

 

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Computer_programming


2 

 

 

Data 

Structured Programming: 
Structured programming is a powerful tool that enable the programmers to write 

complex programs easily. It is a subset of procedural programming. The program is divided 
into modules and the modules are then divided into functions. Each module works 
independent of one another. C language is a very popular structured programming 
language. The main disadvantage of this paradigm is  when the programs grew larger this 
approach failed to show effective results in terms of bug free, maintenance and reusability. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
 

 
Fig :1.2. Structural programming 

  
Object Oriented Programming: 

The program is divided into number of small units called object. The data and 
function are build around these objects. The data of the objects can be accessed only by the 
functions associated with that object. The functions of one object can access the functions of 
other object. In OOP the importance is  given on data rather than functions. The problems 
are divided into objects. Data and function are tied together. Data hiding is possible. New 
data and functions can be easily loaded. Object can communicate with each other using 
functions.  

 
 

    Object -1   Object -2 
 

 Method      Method 

 

  

   Method   Method 

 
 

 
Fig :1.3. Object = Data + Methods 

Main Function 

(Global data + Local Data) 

Function-1 

(Local data) 

Function -2 

(Local data) 

 

Function- n 

(Local data) 

 

Module 1 

 

Module 2 Module -n 

Function -3 

(Local data) 

  

     Data 

Function 

     Data 

Function 



3 

 

 

1.1.2.Basic concepts of Object Oriented Programming 
 
Objects and Classes 
 An object is an instance or result of a class. An entity that has state and behavior is 
known as an object. It can be physical or logical. e.g. chair, pen, table, car banking system 
etc. An object has three characteristics: 
state: It represents data (value) of an object. 
behavior: It represents the behavior (functionality) of an object such as deposit, withdraw.   . 
identity: Object identity is  not visible to the external user. It is used internally by the JVM to  
              identify each object uniquely. 
For Example: Pen is an object. Its name is Reynolds, color is blue known as its state. It is 
used to write, so writing is its function. 

A class can be defined as a template or blueprint from which the objects are created. 
It is a group of objects that has common properties. Class is logical entity only. Classes are 
user defined data types and behave like a built-in types of a programming language. 

 
 

 
                         
 

     Data 
 
 
 
 
 
 

                                     M                        Methods 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig :1.4. Representation of an object 

class : Student                                                                                     

Name 

RollNumber 

Birthdate 

add() 

delete() 

update() 

display() 

 

object  

Name   Anand  

RollNumber  101 

Birthdate  10-10-2000 

add() 

delete() 

update() 

display() 

 

object  

Name   Prasanna 

RollNumber  102 

Birthdate  12-02-1990 

add() 

delete() 

update() 

display() 

 



4 

 

Data abstraction and Encapsulation 
The process of hiding internal details and showing functionality is known as 

abstraction. It groups the essential details and ignore the other details. For example: phone 
call, we don't know the internal processing. In java, abstract class and interface is used to 
achieve abstraction. 

The binding or wrapping code (methods) and data together into a single unit is known 
as encapsulation. The data is not accessible to the outside world. The methods that are 
wrapped with the data only can access it. These methods provide the interface between the 
objects data and program. This insulation of the data from direct access by the program is 
called data hiding. For example: capsule, it is wrapped with different medicines. A java class 
is the example of encapsulation.  
 

 
          Information “in”            Information “out” 

 
 
 

Fig :1.5 Encapsulation 
 
 

Inheritance 
 Inheritance is the process of deriving new class from the existing class. The existing 
class is called base class and the inherited class is called derived class. The derived class 
contains all the attributes and methods of the base class and also its own attributes and 
methods. This provides the idea of reusability. 
 

 
Fig :1.6 Inheritance 

 
 
Polymorphism 
 Polymorphism means the ability to take more than one form. The same principle is 
applicable in object oriented programming where the objects at runtime decide what 
behavior will be invoked. For example, an operation may exhibit different behaviour in 
different instances. The behavior depends on the types of data used in the operation. For an 
add operation the input of two numbers will result in sum, while the input of two strings 
results in concatenation of the string. Polymorphism is implemented in Java using method 
overloading and method overriding. 

Data  

and 

 Method 



5 

 

 
 

Fig :1.7 Polymorphism 

 
 
Dynamic binding 
 Binding is defined as the linking of the procedure or function call to the corresponding 
program code to be executed. The binding which occurs during execution or runtime is 
called as dynamic binding.   
 
 

Message communication 
 An object oriented program consists of set of objects that communicate with each 
other. Objects communicate with one another by sending and receiving information much 
the same way as people pass messages to one another. It is defined as a process of 
sending a request to execute a function for an object. It involves specifying the name of the 
object, the name of the method (message) and the information to be sent. The general form 
is  
 object_name.message( information); 
ex : student.add(“prasanna”,101,12-02-2000); 
 Here student is the object and add is a message sent by the object student and the 
information are inside the parenthesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Triangle objectCircle object

ShapeShape

draw()

Box object

draw(circle) draw(triangle)draw(box)



6 

 

1.1.3.Differences between Procedure Oriented Programming and Object 
Oriented programming 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Procedure oriented Programming 
(POP) 

Object-oriented Programming 
(OOP) 

In procedure oriented programming 
the  program is divided into a number 
of sub modules or functions or 
procedures. 

 In object oriented programming the  
program is divided into a number of  
objects. 

Top-down approach is followed. Bottom-up approach is followed. 

In POP, the importance  is given to 
algorithm and functions. 

In OOP, the importance  is given to data. 

POP does not have any access 
specifier. 

OOPs have access specifier such as 
private, public, protected etc. 

Functions are independent of each 
other. 

Each class is related in a hierarchical 
manner. 

Maintenance is costly. Maintenance is relatively cheaper. 

Software reuse is not possible. Helps in software reuse. 

Function call is used. Message passing is used. 

Function abstraction is used. Data abstraction is used. 

No encapsulation. Data and functions 
are separate. 

Encapsulation packages code and data 
altogether. Data and functionalities are 
put together in a single entity. 

POP does not provide data hiding, so 
it is less secure. 

OOP provides data hiding, so it is more 
security. 

In POP overloading is not possible. 
OOP provides method overloading and 
operator loading. 

Example for POP : C, Visual Basic, 
Pascal etc. 

Example for OOP : C++, JAVA etc 



7 

 

1.4.Benefits of  OOPs 
a. Reusability: 

 In OOP’s programs functions and modules that are written by a user can be    
reused by other users without any modification. 
b. Inheritance: 

 It helps to eliminate redundant code and extend the use of existing classes. 
c. Data Hiding:  

The programmer can hide the data and functions in a class from other                            
classes. It helps the programmer to build the secure programs. 
 
d. Reduced complexity of a problem:  

The given problem can be viewed as a collection of different objects. Each object is 
responsible for a specific task. The problem is solved by interfacing the objects. This 
technique reduces the complexity of the program design. 
e. Easy Maintenance:  

OOP makes it easy to maintain and modify existing code as new objects can be 
created with small differences to existing ones. 
f. Message Passing:  

The technique of message communication between objects makes the interface with 
external systems easier. 
g. Modifiability:  

It is easy to make minor changes in the data representation or the procedures in an 
object oriented program. Changes inside a class do not affect any other part of a program, 
since the only public interface that the external world has to a class is through the use of 
methods. 
 

1.1.5.Applications of OOPS: 
 
Object-oriented programming is the best paradigm to solve the complex oriented problem. 

The following areas make the use of OOP: 
1. Image Processing and Pattern Recognition 
2. Computer Aided Design and Manufacturing 
3. Computer Aided Teaching 
4. Intelligent Systems 
5. Database Management Systems 
6. Web based Applications 
7. Distributed Computing and Applications 
8. Component based Applications 
9. Data security and management 
10. Mobile Computing 
11. Data Warehouse and Data Mining 
12. Parallel Computing 

 
 
 
 
 
 
 
 
 
 
 



8 

 

1.2. JAVA: 

Java is a programming language and a platform. Java is a high level, robust, 
secured and object-oriented programming language. 

Platform: Any hardware or software environment in which a program runs, is known as a 
platform. Since Java has its own runtime environment (JRE) and API, it is called platform. 

1.2.1.History 
 

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, 
and Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first 
working version. This language was initially called “Oak,” but was renamed “Java” in 1995. 
Between the initial implementation of Oak in the fall of 1992 and the public announcement of 
Java in the spring of 1995, many more people contributed to the design and evolution of the 
language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were 
key contributors to the maturing of the original prototype. 

 
The primary motivation was the need for a platform-independent (that is, 

architecture-neutral) language that could be used to create software to be embedded in 
various consumer electronic devices, such as microwave ovens and remote controls. So 
many different types of CPUs are used as controllers. The problem is that compilers are 
expensive and time-consuming to create for different types of CPU. An easier—and more 
cost-efficient—solution was needed. In an attempt to find such a solution, Gosling and others 
began work on a portable, platform-independent language that could be used to produce 
code that would run on a variety of CPUs under differing environments. This effort ultimately 
led to the creation of Java. 

About the time that the details of Java were being worked out, a second, and 
ultimately more important, factor was emerging that would play a crucial role in the future of 
Java. This second force was, of course, the World Wide Web. Java might have remained a 
useful but obscure language for programming consumer electronics. However, with the 
emergence of the World Wide Web, Java was propelled to the forefront of computer 
language design, because the Web, too, demanded portable programs. 
 

1.2.2. Java Features 
 
Simple 

Java was designed to be easy for the professional programmer to learn and use 
effectively. Assuming that you have some programming experience, moving to Java will 
require very little effort. Because Java inherits the C/C++ syntax and many of the object-
oriented features of C++, most programmers find easy to learn Java. 

 
Object-Oriented 

Java is a pure object oriented language. It follows “everything is an object” paradigm. 
The object model in Java is simple and easy to extend, while primitive types, such as 
integers, are kept as high-performance non objects. 

 
Robust 

The multi platform environment of the Web places extraordinary demands on a 
program, because the program must execute reliably in a variety of systems. Thus, the 
ability to create robust programs was given a high priority in the design of Java.  

 Java is robust, because of the two main reasons for program failure: memory 
management mistakes and mishandled exceptional conditions (that is, run-time errors). 



9 

 

Memory management can be a difficult, tedious task in traditional programming 
environments. For example, in C/C++, the programmer must manually allocate and free all 
dynamic memory. This sometimes leads to problems, because programmers will either 
forget to free memory that has been previously allocated or, worse, try to free some memory 
that another part of their code is still using. Java virtually eliminates these problems by 
managing memory allocation and de-allocation. In fact, de-allocation is completely 
automatic, because Java provides garbage collection for unused objects. 

 Exceptional conditions in traditional environments often arise in situations such as 
division by zero or “file not found,” and they must be managed with  hard-to-read constructs. 
Java helps in this area by providing object-oriented exception handling. In a well-written Java 
program, all run-time errors can—and should—be managed by the program. 

 
Multithreaded 

Java was designed to meet the real-world requirement of creating interactive, 
networked programs. To accomplish this, Java supports multithreaded programming, which 
allows to write programs that do many things simultaneously. The Java run-time system 
comes with an elegant yet sophisticated solution for multi process synchronization that 
enables to construct smooth running interactive systems. 

 
Architecture-Neutral 

One of the main problems facing programmers is that no guarantee exists that  a 
program runs today, will run tomorrow—even on the same machine. Operating system 
upgrades, processor upgrades, and changes in core system resources can all combine to 
make a program malfunction. The Java designers made several hard decisions in the Java 
language and the Java Virtual Machine in an attempt to alter this situation. Their goal was 
“write once; run anywhere, anytime, forever.” To a great extent, this goal was accomplished. 
 
Interpreted and High Performance 

Java enables the creation of cross-platform programs by compiling into an 
intermediate representation called Java bytecode. This code can be executed on any system 
that implements the Java Virtual Machine. The Java bytecode was carefully designed so that 
it would be easy to translate directly into native machine code for very high performance by 
using a just-in-time compiler. Java run-time systems that provide this feature lose none of 
the benefits of the platform-independent code. 

 
Distributed 

Java is designed for the distributed environment of the Internet because it handles 
TCP/IP protocols. In fact, accessing a resource using a URL is not much different from 
accessing a file. Java also supports Remote Method Invocation (RMI). This feature enables 
a program to invoke methods across a network. 

 
Dynamic 

Java programs carry with them substantial amounts of run-time type information that 
is used to verify and resolve accesses to objects at run time. This makes it possible to 
dynamically link code in a safe manner. This is crucial to the robustness of the Java 
environment, in which small fragments of bytecode may be dynamically updated on a 
running system. 
Security 

As  downloading a “normal” program, the downloaded program might contain a virus, 
Trojan horse, or other harmful code. At the core of the problem is the fact that malicious 
code can cause its damage because it has gained unauthorized access to system 
resources. For example, a virus program might gather private information, such as credit 
card numbers, bank account balances, and passwords, by searching the contents of your 



10 

 

computer’s local file system. In order for Java to enable applets to be downloaded and 
executed on the client computer safely, it was necessary to prevent an applet from launching 
such an attack. Java achieved this protection by confining an applet to the Java execution 
environment and not allowing it access to other parts of the computer. The ability to 
download applets with confidence that no harm will be done and that no security will be 
breached is considered by many to be the single most innovative aspect of Java. 

 
Portability 

Portability is a major aspect of the Internet because there are many different types of 
computers and operating systems connected to it. If a Java program were to be run on 
virtually any computer connected to the Internet, there needed to be some way to enable 
that program to execute on different systems. For example, in the case of an applet, the 
same applet must be able to be downloaded and executed by the wide variety of CPUs, 
operating systems, and browsers connected to the Internet. It is not practical to have 
different versions of the applet for different computers. The same code must work on all 
computers. Therefore, some means of generating portable executable code was needed. 
 
 

1.2.3. Java Environment 
 

Installing the Java Development Kit (JDK) and the Java Runtime Environment 

Download 
There are many versions of the JDK to download, so  choose the one that best suits 

the types of applications development. Download the latest release of the "Java SE 
Development Kit (JDK)". (e.g. jdk-6u18-windows-i586.exe) 
Installation 

Double click the executable file to begin the installation of the Java Development Kit. 
Accept  the license agreement  to continue. By choosing the default option, It will  install the 
JDK in the system into a folder like C:\Program Files\Java\jdk1.6.0_18.When the JDK has 
been installed, it will attempt to install the latest version of the Java Runtime Environment 
(JRE). Before starting on any Java development, it is essential that machine  have the most 
current Java Runtime Environment installed.  

Note that the latest version of Java is 8. 
Setting the PATH Environment Variable 

If default option is selected during the installation, the JDK installed itself into 
\Program Files\Java\ jdk1.6.0_18\bin  directory. 
Setting the Path 

1. Right click the "My Computer" icon 
2. Choose "Properties" from the popup menu 
3. Click the "Advanced" tab 
4. Click on the Environment Variables button 
5. Under System Variables, find PATH and double click it 
6. In the Edit System Variable dialog box, go to the text box labeled Variable value: 
7. Scroll to the end of the text (hitting the <End> key will do that) 
8. Insert a semicolon (';') and then the full path name of the JDK binaries directory (e.g. 

C:\Program Files\Java\jdk1.6.0_18\bin) 
9. Click OK to close the window(s) 

Now that the JDK software is installed. 

 



11 

 

 

Popular Java Editors 

To write java programs a text editor is needed. There are even more sophisticated IDEs 
available in the market. some of them are 

 Notepad − On Windows machine, any simple text editor like Notepad ,textpad can 
be used. 

 Netbeans − A Java IDE that is open-source and free which can be downloaded 
from https://www.netbeans.org/index.html. 

 Eclipse − A Java IDE developed by the eclipse open-source community and can be 
downloaded from https://www.eclipse.org/. 

 
1.2.4.JDK (Java Development kit) 

JDK contains tools that are required to build and execute Java applications and 
applets. JDK can be freely downloaded from the sun's website. 
javac  - Java Compiler 

The Java source code will be compiled by this compiler, which checks for the syntax of 
the program and will list out errors if any, or will generate the byte code. The Java 
compiler generate the .class file (byte code). 

java – Java interpreter 
Java interpreter reads the .class file of the application programs that contains the byte 
code and executes the code in a local machine. 

appletviewer 
The applet viewer runs the Java applets 

javadoc  -Java Documentation 
 Document generator is used to create documents for large source codes. 

javah - C header 
 It produces header files that are used for writing native methods. 

javap -  Disassembler 
It is used to convert byte code into program description. 

jdb-  Debugger 
 It is used to find errors in the program. 
 

1.2.5.API (Application Programming Interface) 
      Java API is  a set of classes and interfaces that comes with the JDK. Java API is actually 
a huge collection of library routines that performs basic programming tasks such as looping, 
displaying GUI form etc. In the Java API, classes and interfaces are packaged in packages. 
All these classes are written in Java programming language and runs on the JVM. Java 
classes are platform independent but JVM is not platform independent. So there are different 
downloads for each OS. The commonly used packages are 
a.lang package 
 A collection of classes and methods which includes the basic features of java. This is 
a default package. 
b. util package 
 A collection of classes and methods for providing date and time. 
c.applet package 
 A collection of classes and methods for creating and running applets. 
d.abstract window toolkit package 
 A collection of classes and methods for implementing graphical user interface. 
e.input/output package.  
  A collection of classes and methods for input output operations. 
 
 

https://www.netbeans.org/index.html
https://www.eclipse.org/


12 

 

 

 
1.3.Introduction to Java : 
 
1.3.1. Types of java program 

There are two types of Java programs. They are as follows : 
         1. Application Programs 
         2. Applet Programs 
Application Programs 

Application programs are stand-alone programs that are written to carry out certain 
tasks on local computer such as solving equations, reading and writing files etc.The 
application programs are allowed to access the local file system and the resources. 
The application programs can be executed using two steps 

1.Compile source code to generate Byte code using Javac compiler. 
2. Execute the byte code program using Java interpreter. 

Applet programs 
Applets are small Java programs developed for Internet applications. An applet 

located in distant computer can be downloaded via Internet and executed on a local 
computer using Java enabled browser. The applets are restricted to access the local file 
system and the resources. The Java applets can also be executed in the command line 
using appletviewer, a JDK tool. 

 
1.3.2.Creating and Executing a Java program 
 
1. Creating a program : 
 In Java, a source file is officially called a compilation unit. It is a text file that contains 
one or more class definitions. Using any text editor such as notepad in windows or edit in 
DOS etc , a java source file can be created. The created java file should be saved with 
extension as java. 
   The general form is filename.java 
If the source file has more than one class, then the filename should be the class name which 
is having the main method in it. 
The general form of a java source file is 

class classname 
{ 
 // Your program begins with a call to main(). 

public static void main(args[ ]) 
{ 
} 

 
} 
 Here class name is user defined and class is a keyword. 

 
example  

class First 
{ 
  

public static void main(args[ ]) 
{ 
System.out.println(“Welcome to Java World”); 
} 

 
} 



13 

 

 
 Save the file as  First.java 
2.Compiling the program 

javac compiler is used to compile the java program. The java source program is 
compiled into class files. Java compiler creates a class file and the class files contains the 
byte codes of the program.     
 
 The general form for compiling is 
   javac filename.java 
example : 
  In the command prompt type 
  C:\ javac First.java 
 After compilation First.class file is generated. 
3.Executing the program 
 java interpreter is used to execute the compiled program.The general form for 
executing a java file is 
  java classname 
example : 
 In the command prompt type 
  C:\ java First 
When the program is run, the following output is displayed for the above program First.java: 
       Welcome to Java world 
   
 
 
1.3.3.Java Tokens: 

The Smallest individual elements in a program are called tokens. Java language 
includes five types of tokens. More than one token can appear in a same line separated by 
spaces. They are as follows 
1.Keywords 
2.Identifiers 
3.Literals 
4.Operators 
5.Separators 
 
example : 

class First 
{ 
  int x,y,z; 
}  
  keyword – class 
 identifier –  x y z First 
 separators - , ; { } 

 
 
 
 
Keywords 
 keywords are the words which belongs to the java language. They have standard 
predefined meaning. They should be used only for the intended purpose. They should be 
written in small case letters. Here is a list of keywords in the Java programming language. 
They cannot be used as  identifiers in the programs. The keywords const and goto are 



14 

 

reserved, even though they are not currently used. true, false, and null might seem like 
keywords, but they are actually literals;  
 

abstract continue for new switch 

assert default goto* package synchronized 

boolean Do if private this 

break double implements protected throw 

byte Else import public throws 

case enum instanceof return transient 

catch extends int short try 

char final interface static void 

class finally long strictfp** volatile 

const* float native super while 

 
Character set 

A character set is a set of textual and graphic symbols, each of which is mapped to a 
set of nonnegative integers. Character set defines the characters that are used in a 
programming languages. Java uses unicode character set. Unicode is a 16-bit character set 
designed to cover all the world's major living languages, in addition to scientific symbols and 
dead languages that are the subject of scholarly interest. The first 256 values are the same 
as the ASCII character set. 
 
Identifiers 

Identifiers are used for class names, method names, and variable names. An 
identifier may be any descriptive sequence of uppercase and lowercase letters, numbers, or 
the underscore and dollar-sign characters. They must not begin with a number. Java is case-
sensitive, so VALUE is a different identifier than Value. 
Some examples of valid identifiers are 

AvgTemp  
count 
 a4 
 $test 
 this_is_ok 

Invalid identifier names include these: 
2count  // Cannot start with numeral 
high-temp  // Cannot have hyphen symbol 
Not/ok  //operators are not allowed as identifier 

 My Class          // spaces are not allowed  

 

Literals 
 A constant value in Java is created by using a literal representation of it. For 
example, here are some literals: 

    Integer literals:  10 15 2 
   Floating-point literals: 2.3 1.1 

          Character literals: '(' 'J' 'j'  
          Boolean literals: true false 
          String literals: "Java" "100" "x"  

 
 
 
 



15 

 

 
 
 
Separator 

In Java, there are a few characters that are used as separators. The most commonly 
used separator in Java is the semicolon. It is used to terminate statements. The separators 
are shown in the following table: 

Symbol Name Purpose 

( ) Parenthesis Used to contains list of parameters 

{ } Braces 
Used to define a block of code, for classes, methods, and 
local scopes. 

[ ] Brackets Used to declare array types. Also used when dereferencing 

array values. 

, Comma 
Separates consecutive identifiers in a variable declaration. 
Also used to chain statements together inside a for statement. 

; Semicolon Terminating statements 

. Period 
Used to separate package names from sub packages and 
classes. Also used to separate a variable or method from a 
reference variable. 

 
1.3.4.Java Virtual Machine (JVM)  
           A Java virtual machine (JVM) is an abstract computing machine that enables a 
computer to run a Java program. There are three notions of the JVM specification, 
implementation and instance.  The specification is a document that formally describes what is 
required of a JVM implementation. Having a single specification ensures all implementations 
are interoperable. A JVM implementation is a computer program that meets the requirements of 
the JVM specification. An instance of a JVM is an implementation running in a process that 
executes a computer program compiled into Java bytecode. 

 Java compiler compiles the source code into bytecode which is a machine 
independent code. These intermediate codes are called java virtual machine (JVM). These 
intermediate codes are converted into machine dependent code with the help of interpreter 
and can be run by the computer. 
 
1.3.5.Command Line Arguments 
 A Java application can accept any number of arguments from the command line. The 
user enters command-line arguments when invoking the application and specifies them after 
the name of the class to be run. When an application is launched, the runtime system 
passes the command-line arguments to the application's main method via an array 
of Strings. 

 For example, suppose a Java application called student requires name list,  the user 
would enter the names  in the command line 
 

public class student { 
    public static void main (String[] args) { 

https://en.wikipedia.org/wiki/Interoperability
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Java_bytecode


16 

 

        for (String s: args) { 
            System.out.println(s);         }     } 
} 

The following example shows how a user might run student. User input is in italics. student 
is a class name 
java student Anand Prasanna Raja 
Anand 
Prasanna 
Raja 
The application displays each word — Anand, Prasanna, Raja  — on a line by itself. This is 
because the space character separates command-line arguments.  
 
args.length will provide the  total number of arguments passed. 
 

1.3.6.Comments in Java program 
Comments are non executable statements included in the program for understanding 

purpose. In java language there are three kinds of comments. They are as follows 
1.Single line comment 
2.Multiline comment 
3.Documentation comment 
 

1.Single line comment 
 Single line comment starts with //. 
 
 // text 

The compiler ignores everything from // to the end of the line. 
2.Multiline comment 
 Multiline comment starts with /* and ends with */. 
 

/* text */ 
The compiler ignores everything from /* to */. 

3.Documentation comment 
 Documentation comment starts with /** and ends with */. 
 

/** documentation */ 
 The compiler ignores everything from /** to */. The JDK javadoc tool uses doc comments 
when preparing automatically generated documentation. 
 
example 
 

The bold characters in the following listing are comments. 
/* 
  The HelloWorldApp class implements an application that 
  simply displays "Hello World!" to the standard output. 
 */ 
class HelloWorldApp 
 { 
    public static void main(String[] args)  
 { 
        System.out.println("Hello World!"); //Display the string. 
    } 
} 
 
 



17 

 

 
 
 

Review Questions 
Short answer Questions 

 
1. What are the paradigms of programming languages? 
2. Define class. 
3. Define object. 
4. What is mean by data encapsulation? 
5. What is mean by data abstraction? 
6. Define inheritance. 
7. Define polymorphism. 
8. What is mean by dynamic binding? 
9. How the objects are communicated? 
10.Expand JDK and API. 
11.What are the types of java program? 
12.What are java tokens? 
13.Define literal. 
14.What are the character set used in java? 
15. Define comments. 
16.What are the types of comments in a java program? 
17. What is mean by identifier? 
18.What is keyword in java? 
19.What are the available separators in java? 
20.What are command line arguments? 
 
Long answer questions 
 
1. Explain in detail about the various paradigms used in programming. 
2. What are the benefits of OOPS? 
3. What are the application of OOPS? 
4.  Explain with an example about object and classes. 
5. Explain about the history of java. 
6. What are the features of java ? Explain them. 
7.  Explain about the java environment. 
8. Explain about the JDK and API. 
9. How a java program is created and executed? Explain in detail. 
10.Explain in detail about the JVM. 
11. Explain  with example about the command line arguments. 
12.Describe about the various comments used in a java program. 

 
 
 
 
 
 
 
 
 
 
 
 



18 

 

 
 
 

UNIT II CONTROL STRUCTURES, ARRAYS, AND VECTORS 
 
OBJECTIVES 
 
To understand the concepts of variables, constants 
To learn the various operators and evaluation of expressions 
To learn the control structures and looping statements 
To learn and understand about arrays and vectors. 

 
2.1. Elements: 
 
2.1.1.Constants : 

A constant value in Java is created by using a literal representation of it. For 
example, here are some literals: 

100 98.6 'X' "This is a test" 
Left to right, the first literal specifies an integer, the next is a floating-point value, the 

third is a character constant, and the last is a string. A literal can be used anywhere a value 
of its type is allowed. 

 
2.1.2.Variables : 
 Variable is name of reserved area allocated in memory. Its value changes during 
execution. 

 
int  x=50;//Here x is variable   

 

 

 

 
 
 
 

2.1.3.Datatypes : 
 

In java, the data types are classified into 

o primitive data types 

o non-primitive data types 

 

 



19 

 

 
 

 
   Java defines eight primitive types of data: byte, short, int, long, char, float, double, and 
boolean. The primitive types are also commonly referred to as simple types. These can be 
put in four groups: 
• Integers This group includes byte, short, int, and long, which are for whole-valued signed 
numbers. 
• Floating-point numbers This group includes float and double, which represent numbers 
with fractional precision. 
• Characters This group includes char, which are symbols in a character set,like letters and 
numbers. 
• Boolean This group includes boolean, which is a special type for representing true/false 
values. 
Integers 

Java defines four integer types: byte, short, int, and long. All of these are signed, 
positive and negative values.  
byte 

The smallest integer type is byte. This is a signed 8-bit type that has a range from –
128 to 127. Byte variables are declared by use of the byte keyword. For example, the 
following declares two byte variables called b and c: 
byte b, c; 
short 

short is a signed 16-bit type. It has a range from –32,768 to 32,767. Here are some 
examples of short variable declarations: 
short s; short t; 
int 

The most commonly used integer type is int. It is a signed 32-bit type that has a 
range from –2,147,483,648 to 2,147,483,647.  
long 

long is a signed 64-bit type and is useful for those occasions where an int type is not 
large 
enough to hold the desired value. The range of a long is quite large. 
Floating-Point Types 



20 

 

Floating-point numbers, also known as real numbers, are used when evaluating 
expressions that require fractional precision. For example, calculations such as square root, 
or transcendental such as sine and cosine, result in a value whose precision requires a 
floating-point type. There are two kinds of floating-point types, float and double, which 
represent single- and double-precision numbers, respectively. 
float 

The type float specifies a single-precision value that uses 32 bits of storage.  Here 
are some example float variable declarations: 
float hightemp, lowtemp; 
double 

Double precision, as denoted by the double keyword, uses 64 bits to store a value.  
Characters 

In Java, the data type used to store characters is char. For this purpose, it requires 
16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536.  
Booleans 

Java has a primitive type, called boolean, for logical values. It can have only one of 
two possible values, true or false. This is the type returned by all relational operators, as in 
the case of a < b. boolean is also the type required by the conditional expressions that 
govern the control statements such as if and for. 
 
2.1.4. Scope of Variables 

Java allows variables to be declared within any block. A block is begun with an 
opening curly brace and ended by a closing curly brace. A block defines a scope. A scope 
determines what objects are visible to other parts of the program. It also determines the 
lifetime of those objects. As a general rule, variables declared inside a scope are not visible 
(that is, accessible) to code that is defined outside that scope. Thus, when  a variable is 
declared  within a scope, that variable is a local variable and protecting it from unauthorized 
access and/or modification. 

Indeed, the scope rules provide the foundation for encapsulation. Scopes can be 
nested. When this occurs, the outer scope encloses the inner scope. This means that 
objects declared in the outer scope will be visible to code within the inner scope. However, 
the reverse is not true. Objects declared within the inner scope will not be visible outside it. 

To understand the effect of nested scopes, consider the following program: 
 

// Demonstrate block scope. 
class Scope { 
public static void main(String args[]) { 
int x;   // known to all code within main 
x = 10; 
if(x == 10) {   // start new scope 
int y = 20;   // known only to this block 

// x and y both known here. 
System.out.println("x and y: " + x + " " + y); 
x = y * 2; 
} 
// y = 100;   // Error! y not known here 

// x is still known here. 
System.out.println("x is " + x); 
} 
} 
As the comments indicate, the variable x is declared at the start of main( )’s scope 

and is accessible to all subsequent code within main( ). Within the if block, y is declared. 
Since a block defines a scope, y is only visible to other code within its block. This is why 



21 

 

outside of its block, the line y = 100; is commented out. If  the leading comment symbol is 
removed, a compile-time error will occur, because y is not visible outside of its block. Within 
the if block, x can be used because code within a block (that is, a nested scope) has access 
to variables declared by an enclosing scope. 
 
2.1.5.Type casting 

It is fairly common to assign a value of one type to a variable of another type. If the 
two types are compatible, then Java will perform the conversion automatically. However, not 
all types are compatible, and thus, not all type conversions are implicitly allowed. For 
instance, there is no automatic conversion defined from double to byte. Fortunately, it is still 
possible to obtain a conversion between incompatible types by using  cast, which performs 
an explicit conversion between incompatible types.  

When one type of data is assigned to another type of variable, an automatic type 
conversion will take place if the following two conditions are met: 
• The two types are compatible. 
• The destination type is larger than the source type. 

When these two conditions are met, a widening conversion takes place. For 
example, the int type is always large enough to hold all valid byte values, so no explicit cast 
statement is required. For widening conversions, the numeric types, including integer and 
floating-point types, are compatible with each other. However, there are no automatic 
conversions from the numeric types to char or boolean. Also, char and boolean are not 
compatible with each other. Java also performs an automatic type conversion when storing a 
literal integer constant into variables of type byte, short, long, or char. 

To create a conversion between two incompatible types,  use a cast. A cast is 
simply an explicit type conversion. It has this general form: 
(target-type) value 
Here, target-type specifies the desired type to convert the specified value to. For example, 
the following fragment casts an int to a byte. If the integer’s value is larger than the range of 
a byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range. 

int a; 
byte b; 
// ... 
b = (byte) a; 

 

2.1.6.Operators: 

 
Arithmetic Operators 
Arithmetic operators are used in mathematical expressions in the same way that they are 
used in algebra. The following table lists the arithmetic operators: 

        Operator    Result 
+    Addition 
–    Subtraction (also unary minus) 
*    Multiplication 
/    Division 
%    Modulus 
++    Increment 
– –     Decrement 

The operands of the arithmetic operators must be of a numeric type.  
 
Relational Operators 

The relational operators determine the relationship that one operand has to the other. 
Specifically, they determine equality and ordering. The relational operators are shown here: 
 



22 

 

         Operator   Result 
==   Equal to 
!=   Not equal to 

                                    >                     Greater than 
<          Less than 
>=   Greater than or equal to 
<=   Less than or equal to 

The outcome of these operations is a boolean value. The relational operators are 
most frequently used in the expressions that control the if statement and the various loop 
statements. Any type in Java, including integers, floating-point numbers, characters, and 
Booleans can be compared using the equality test, ==, and the inequality test, !=. As stated, 
the result produced by a relational operator is a boolean value. For example,the following 
code fragment is perfectly valid: 

int a = 4; 
int b = 1; 
boolean c = a < b; 

In this case, the result of a<b (which is false) is stored in c. 
 
The Assignment Operator 

The assignment operator is the single equal sign, =. The assignment operator works 
in Java much as it does in any other computer language. It has this general form: 
variable = expression; 

Here, the type of variable must be compatible with the type of expression. The 
assignment operator allows  to create a chain of assignments. For example, consider this 
fragment: 

int x, y, z; 
x = y = z = 100; // set x, y, and z to 100 
This fragment sets the variables x, y, and z to 100 using a single statement. This 

works because the = is an operator that yields the value of the right-hand expression. Thus, 
the value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using 
a “chain of assignment” is an easy way to set a group of variables to a common value. 
 
Boolean Logical Operators 

The Boolean logical operators shown here operate only on boolean operands. All of 
the binary logical operators combine two boolean values to form a resultant boolean value. 

    Operator   Result 
&   Logical AND 
|   Logical OR 
^   Logical XOR (exclusive OR) 
!   Logical unary NOT 

The logical Boolean operators, &, |, and ^, operate on boolean values in the same 
way that they operate on the bits of an integer. The logical ! operator inverts the Boolean 
state :!true == false and !false == true. The following table shows the effect of each logical 
operation: 

   A     B   A | B   A & B   A ^ B   !A 
False  False   False   False   False   True 
True   False   True   False   True   False 
False  True   True   False   True   True 
True   True   True   True   False   False 

 
 
 
 



23 

 

The Bitwise Operators 
Java defines several bitwise operators that can be applied to the integer types, long, 

int, short, char, and byte. These operators act upon the individual bits of their operands. 
They are summarized in the following table: 

     Operator   Result 
~   Bitwise unary NOT 
&   Bitwise AND 
|   Bitwise OR 
^   Bitwise exclusive OR 
>>   Shift right 
>>>   Shift right zero fill 
<<   Shift left 

Since the bitwise operators manipulate the bits within an integer, it is important to 
understand what effects such manipulations may have on a value. Specifically, it is useful to 
know how Java stores integer values and how it represents negative numbers. All of the 
integer types are represented by binary numbers of varying bit widths. For example, the byte 
value for 42 in binary is 00101010, where each position represents a power of two, starting 
with 20 at the rightmost bit. The next bit position to the left would be 21, or 2 , continuing 
toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits set at positions 1, 3, 
and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25, which is 2 + 8 + 32. 
All of the integer types (except char) are signed integers. This means that they can 
represent negative values as well as positive ones. Java uses an encoding known as two’s 
complement, which means that negative numbers are represented by inverting (changing 1’s 
to 0’s and vice versa) all of the bits in a value, then adding 1 to the result. For example, –42 
is represented by inverting all of the bits in 42, or 00101010, which yields 11010101, then 
adding 1, which results in 11010110, or –42. To decode a negative number, first invert all of 
the bits, then add 1. For example, –42, or 11010110 inverted, yields 00101001, or 41, so 
when  1 s added , the result will be 42. 
 
The Bitwise Logical Operators 
The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of 
each operation.  

A  B  A | B   A & B   A ^ B   ~A 
0  0  0   0   0   1 
1  0  1   0   1   0 
0   1  1    0   1   1 
1  1  1    1   0   0 
The Bitwise NOT 

Also called the bitwise complement, the unary NOT operator, ~, inverts all of 
the bits of its operand. For example, the number 42, which has the following bit 
pattern: 

00101010 
becomes 
11010101 

after the NOT operator is applied. 
The Bitwise AND 
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is 

 produced in all other cases. Here is an example: 
     00101010  42 
&  00001111   15 
    00001010   10 

 
 



24 

 

The Bitwise OR 
The OR operator, |, combines bits such that if either of the bits in the operands is a 1, 
then the resultant bit is a 1, as shown here: 
00101010  42 

          | 00001111  15 
            00101111  47 

The Bitwise XOR 
The XOR operator, ^, combines bits such that if exactly one operand is 1, 

then the result is 1.Otherwise, the result is zero. The following example shows the 
effect of the ^. This example also demonstrates a useful attribute of the XOR 
operation. Notice how the bit pattern of 42 is inverted wherever the second operand 
has a 1 bit. Wherever the second operand has a 0 bit, the first operand is 
unchanged. You will find this property useful when performing some types of bit 
manipulations. 
00101010  42 

         ^ 00001111  15 
00100101  37 

 
The ? Operator 

Java includes a special ternary (three-way) operator that can replace certain types of 
if-then-else statements. This operator is the ?. The ? has this general form: 
expression1 ? expression2 : expression3 

Here, expression1 can be any expression that evaluates to a boolean value. If 
expression1 is true, then expression2 is evaluated; otherwise, expression3 is evaluated. The 
result of the ? operation is that of the expression evaluated. Both expression2 and 
expression3 are required to return the same type, which can’t be void. 
Here is an example of the way that the ? is employed: 
ratio = denom == 0 ? 0 : num / denom; 

When Java evaluates this assignment expression, it first looks at the expression to 
the left of the question mark. If denom equals zero, then the expression between the 
question mark and the colon is evaluated and used as the value of the entire ? expression. If 
denom does not equal zero, then the expression after the colon is evaluated and used for 
the value of the entire ? expression. The result produced by the ? operator is then assigned 
to ratio. 
2.1.7.SPECIAL OPERATOR 
1. instanceof Operator 

This operator is used to know if an object is an instance of a particular class or not.   
This operator returns “true” if an object given at the left hand side is an instance of 
the class given at right hand side. Otherwise, it returns “false”. 
Example 
circle instanceof Shape 
The above statement checks if the object “circle” is an instance of the class “Shape”. 
If yes, it returns “true”, else returns “false” 

2. Dot operator 
This operator is used to access the variables and methods of a class. 
Example 1 
student.mark    
Here we are accessing the variable “mark” of the “student” object 
Example 2 
student.getMarks() 
Here we are accessing the method “getMarks” of the “student” object. 
This operator also can be used to access classes, packages etc. 

 



25 

 

2.1.8.Expressions- Evaluation of Expressions 

An expression is a construct made up of variables, operators, and method 
invocations, which are constructed according to the syntax of the language, that evaluates to 
a single value.  

int a = 0; 
int b = 100; 
int c; 
c= a+ b; 
 
System.out.println("c: " + c]); 
 
if (value1 == value2)  
    System.out.println("value1 == value2"); 

The data type of the value returned by an expression depends on the elements used 
in the expression. The expression c = a + b returns an int because the assignment operator 
returns a value of the same data type as its left-hand operand; in this case, c is an int. As 
from the other expressions, an expression can return other types of values as well, such 
as boolean or String. 

Highest    

( ) [ ]   

++ -- ~ ! 

* / %  

+ -   

>> >>> <<  

> >= < <= 

== !=   

&    

^    

|    

&&    

||    

?:    

=op=    

Lowest    

 
Table : The precedence of java operators. 
 

Parentheses are used to alter the precedence of an operation. The square brackets 
provide array indexing. The dot operator is used to dereference objects. Parentheses raise 
the precedence of the operations that are inside them. 

The Java programming language allows  to construct compound expressions from 
various smaller expressions as long as the data type required by one part of the expression 
matches the data type of the other. Here's an example of a compound expression: 
  
 1 * 2 * 3 
 In this particular example, the order in which the expression is evaluated is 
unimportant because the result of multiplication is independent of order; the outcome is 
always the same, no matter in which order you apply the multiplications. However, this is not 



26 

 

true of all expressions. For example, the following expression gives different results, 
depending on whether you perform the addition or the division operation first: 
 
 x + y / 100    // ambiguous 

To specify exactly how an expression will be evaluated using balanced parenthesis: 
For example, to make the previous expression unambiguous, you could write the following:  

 (x + y) / 100  // unambiguous, recommended 

If the order is not mentioned  explicitly for the operations to be performed, the order is 
determined by the precedence assigned to the operators in use within the expression. 
Operators that have a higher precedence get evaluated first. For example, the division 
operator has a higher precedence than does the addition operator. Therefore, the following 
two statements are equivalent: 

 x+y/100  
 
 x + (y / 100) // unambiguous, recommended 

When writing compound expressions, be explicit and indicate with parentheses which 
operators should be evaluated first. 

 
2.2 Decision making and Branching:  A programming language uses control statements to cause the flow of execution to 
advance and branch based on changes to the state of a program. Java’s program control 
statements can be put into the following categories: selection, iteration, and jump. Selection 
statements allow program to choose different paths of execution based upon the outcome of 
an expression or the state of a variable. Iteration statements enable program execution to 
repeat one or more statements (that is, iteration statements form loops). Jump statements 
allows program to execute in a nonlinear fashion. 

 
2.2.1.The Simple if Statement 

The Java if statement works much like the IF statement in any other language. Its 
syntax is shown here: 

if(condition) statement; 
Here, condition is a Boolean expression. If condition is true, then the statement is 

executed.If condition is false, then the statement is bypassed. Here is an example: 
 

if(num < 100) System.out.println("num is less than 100"); 
 

In this case, if num contains a value that is less than 100, the conditional expression 
is true, and println( ) will execute. If num contains a value greater than or equal to 100, then 
the println( ) method is bypassed. 
 

 
 
 
 
 



27 

 

2.2.2.if else statement 
The if else statement is Java’s conditional branch statement. It can be used to route 

program execution through two different paths. Here is the general form of the if else 
statement: 
 

if (condition) statement1; 
else statement2; 
 
Here, each statement may be a single statement or a compound statement enclosed 

in curly braces (that is, a block). The condition is any expression that returns a boolean 
value. The else clause is optional. The if works like this: If the condition is true, then 
statement1 is executed. Otherwise,statement2 (if it exists) is executed. In no case will both 
statements be executed. For example, consider the following: 

int a, b; 
// ... 
if(a < b) a = 0; 
else b = 0; 

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they 
both set to zero. 
 
2.2.3.Nested if 

A nested if is an if statement that is the target of another if or else. Nested ifs are 
very common in programming. When ifs are nested, the main thing to remember is that an 
else statement always refers to the nearest if statement that is within the same block as the 
else and that is not already associated with an else. Here is an example: 
if(i == 10) { 
if(j < 20) a = b; 
if(k > 100) c = d; // this if is 
else a = c; // associated with this else 
} 
else a = d; // this else refers to if(i == 10) 

As the comments indicate, the final else is not associated with if(j<20) because it is 
not in the same block (even though it is the nearest if without an else). Rather, the final else 
is associated with if(i==10). The inner else refers to if(k>100) because it is the closest if 
within the same block. 
 
2.2.4.The if-else-if Ladder 

A common programming construct that is based upon a sequence of nested ifs is the 
if-else-if ladder. It looks like this: 

if(condition) 
statement; 
else if(condition) 
statement; 
else if(condition) 
statement; 
... 
else 
statement; 
The if statements are executed from the top down. As soon as one of the conditions 

controlling the if is true, the statement associated with that if is executed, and the rest of the 
ladder is bypassed. If none of the conditions is true, then the final else statement will be 
executed. 



28 

 

The final else acts as a default condition; that is, if all other conditional tests fail, then 
the last else statement is performed. If there is no final else and all other conditions are 
false, then no action will take place. 

Here is a program that uses an if-else-if ladder to determine which season a 
particular month is in. 
 

// Demonstrate if-else-if statements. 
class IfElse { 
public static void main(String args[]) { 
int month = 4; // April 
String season; 
if(month == 12 || month == 1 || month == 2) 
season = "Winter"; 
else if(month == 3 || month == 4 || month == 5) 
season = "Spring"; 
else if(month == 6 || month == 7 || month == 8) 
season = "Summer"; 
else if(month == 9 || month == 10 || month == 11) 
season = "Autumn"; 
else 
season = "Bogus Month"; 
System.out.println("April is in the " + season + "."); 
} 
} 

Here is the output produced by the program: 
April is in the Spring. 
 
2.2.5.switch 

The switch statement is Java’s multi-way branch statement. It provides an easy way 
to dispatch execution to different parts of your code based on the value of an expression. As 
such, it often provides a better alternative than a large series of if-else-if statements. Here is 
the general form of a switch statement: 

switch (expression) { 
case value1: 
// statement sequence 
break; 
case value2: 
// statement sequence 
break; 
... 
case valueN: 
// statement sequence 
break; 
default: 
// default statement sequence 
} 

The expression must be of type byte, short, int, or char; each of the values specified in the 
case statements must be of a type compatible with the expression. Each case value must 
be a unique literal (that is, it must be a constant, not a variable). Duplicate case values are 
not allowed. 

The switch statement works like this: The value of the expression is compared with 
each of the literal values in the case statements. If a match is found, the code sequence 
following that case statement is executed. If none of the constants matches the value of the 



29 

 

expression, then the default statement is executed. However, the default statement is 
optional. If no case matches and no default is present, then no further action is taken. The 
break statement is used inside the switch to terminate a statement sequence. When a 
break statement is encountered, execution branches to the first line of code that follows the 
entire switch statement. This has the effect of “jumping out” of the switch. Here is a simple 
example that uses a switch statement: 

// A simple example of the switch. 
class SampleSwitch { 
public static void main(String args[]) { 
for(int i=0; i<6; i++) 
switch(i) { 
case 0: 
System.out.println("i is zero."); 
break; 
case 1: 
System.out.println("i is one."); 
break; 
case 2: 
System.out.println("i is two."); 
break; 
case 3: 
System.out.println("i is three."); 
break; 
default: 
System.out.println("i is greater than 3."); 
} 
} 
} 
The output produced by this program is shown here: 
i is zero. 
i is one. 
i is two. 
i is three. 
i is greater than 3. 
i is greater than 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



30 

 

Looping Statements 
Java’s iteration statements or looping statements are for, while, and do-while. 

These statements create  loops. A loop repeatedly executes the same set of instructions 
until a termination condition is met. Java has a loop to fit any programming need. 
 
2.2.6.While 

The while loop is Java’s most fundamental loop statement. It repeats a statement or 
block while its controlling expression is true. Here is its general form: 

while(condition) { 
// body of loop 
} 

The condition can be any Boolean expression. The body of the loop will be executed 
as long as the conditional expression is true. When condition becomes false, control passes 
to the next line of code immediately following the loop. The curly braces are unnecessary if 
only a single statement is being repeated. 
Here is a while loop that counts down from 10, printing exactly ten lines of “tick”: 

// Demonstration of   while loop. 
class While { 
public static void main(String args[]) { 
int n = 10; 
while(n > 0) { 
System.out.println("tick " + n); 
n--; 
} 
} 
} 
When you run this program, it will “tick” ten times: 
tick 10 
tick 9 
tick 8 
tick 7 
tick 6 
tick 5 
tick 4 
tick 3 
tick 2 
tick 1 
Since the while loop evaluates its conditional expression at the top of the loop, the 

body of the loop will not execute even once if the condition is false to begin with. For 
example, in the following fragment, the call to println( ) is never executed: 

int a = 10, b = 20; 
while(a > b) 
System.out.println("This will not be displayed"); 

2.2.7.do-while 
If the conditional expression controlling a while loop is initially false, then the body of 

the loop will not be executed at all. However, sometimes it is desirable to execute the body 
of a loop at least once, even if the conditional expression is false to begin with. In other 
words, there are times  to test the termination expression at the end of the loop rather than 
at the beginning. Fortunately, Java supplies a loop that does just that: the do-while. The do-
while loop always executes its body at least once, because its conditional expression is at 
the bottom of the loop. Its general form is 

do { 
// body of loop 



31 

 

} while (condition); 
Each iteration of the do-while loop first executes the body of the loop and then 

evaluates the conditional expression. If this expression is true, the loop will repeat. 
Otherwise, the loop terminates. As with all of Java’s loops, condition must be a Boolean 
expression. 
Here is an example that demonstrates the do-while loop. 
It generates the same output as before. 

// Demonstration  of  do-while loop. 
class DoWhile { 
public static void main(String args[]) { 
int n = 10; 
do { 
System.out.println("tick " + n); 
n--; 
} while(n > 0); 
} 
} 

 
2.2.8.for 
 It is a powerful and versatile construct. Here is the general form of the traditional for 
statement: 

for(initialization; condition; iteration) { 
// body 
} 
If only one statement is being repeated, there is no need for the curly braces. The for 

loop operates as follows. When the loop first starts, the initialization portion of the loop is 
executed. Generally, this is an expression that sets the value of the loop control variable, 
which acts as a counter that controls the loop. It is important to understand that the 
initialization expression is only executed once. Next, condition is evaluated. This must be a 
Boolean expression. It usually tests the loop control variable against a target value. If this 
expression is true, then the body of the loop is executed. If it is false, the loop terminates. 
Next, the iteration portion of the loop is executed. This is usually an expression that 
increments or decrements the loop control variable. The loop then iterates, first evaluating 
the conditional expression, then executing the body of the loop, and then executing the 
iteration expression with each pass. This process repeats until the controlling expression is 
false. 
Here is an example uses a for loop: 

// Demonstration  of  for loop. 
class ForTick { 
public static void main(String args[]) { 
int n; 
for(n=10; n>0; n--) 
System.out.println("tick " + n); 
} 
} 
 

 

2.2.9.break 
In Java, the break statement has three uses. First, it terminates a statement 

sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used 
as a “civilized” form of goto. By using break, immediate termination of a loop, bypassing the 
conditional expression and any remaining code in the body of the loop is forced. When a 



32 

 

break statement is encountered inside a loop, the loop is terminated and program control 
resumes at the next statement following the loop. Here is a simple example: 

// Using break to exit a loop. 
class BreakLoop { 
public static void main(String args[]) { 
for(int i=0; i<100; i++) { 
if(i == 10) break; // terminate loop if i is 10 
System.out.println("i: " + i); 
} 
System.out.println("Loop complete."); 
} 
}  
 

This program generates the following output: 
i: 0 
i: 1 
i: 2 
i: 3 
i: 4 
i: 5 
i: 6 
i: 7 
i: 8 
i: 9 

Loop complete. 
 

2.2.10.Labelled loop 

The statement continue may specify a label to describe which enclosing loop to 
continue. Here is an example program that uses continue to print a triangular multiplication 
table for 0 through 9. The continue statement in this example terminates the loop counting j 
and continues with the next iteration of the loop counting i. 
 

// Using continue with a label. 
class ContinueLabel { 
public static void main(String args[]) { 
outer: for (int i=0; i<10; i++) { 
for(int j=0; j<10; j++) { 
if(j > i) { 
System.out.println(); 
continue outer; 
} 
System.out.print(" " + (i * j)); 
} 
} 
System.out.println(); 
} 
} 

 
Here is the output of this program: 

0 
0 1 
0 2 4 
0 3 6 9 



33 

 

0 4 8 12 16 
0 5 10 15 20 25 
0 6 12 18 24 30 36 
0 7 14 21 28 35 42 49 
0 8 16 24 32 40 48 56 64 
0 9 18 27 36 45 54 63 72 81 
 

2.2.11.continue 
Sometimes it is useful to force an early iteration of a loop. That is, it might want to 

continue running the loop but stop processing the remainder of the code in its body for this 
particular iteration. This is, in effect, a goto just past the body of the loop, to the loop’s end. 
The continue statement performs such an action. In while and do-while loops, a continue 
statement causes control to be transferred directly to the conditional expression that controls 
the loop. In a for loop, control goes first to the iteration portion of the for statement and then 
to the conditional expression. For all three loops, any intermediate code is bypassed. Here is 
an example program that uses continue to cause two numbers to be printed on each line: 

// Demonstrate continue. 
class Continue { 
public static void main(String args[]) { 
for(int i=0; i<10; i++) { 
System.out.print(i + " "); 
if (i%2 == 0) continue; 
System.out.println(""); 
} 
} 
} 
This code uses the % operator to check if i is even. If it is, the loop continues without 

printing a newline. Here is the output from this program: 
0 1 
2 3 
4 5 
6 7 
8 9 

 
Good uses of continue are rare. One reason is that Java provides a rich set of loop 

statements which fit most applications. However, for those special circumstances in which 
early iteration is needed, the continue statement provides a structured way to accomplish it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 

 

2.3  ARRAYS 
2.3.1 Arrays 
An array is a collection of variables of the same type, referred  by a common name.  The 
number of values that can be stored in an array is known as size of the array. The size of the 
array must be integer and cannot be changed during run time. The individual value of an 
array is called  element.  A specific element in an array is accessed by writing a number is 
known as  index or subscript. An index always start with zero. 
2.3.1.1 One Dimensional Array 
An array with only one subscript is known as one dimensional array. 
eg: If we want to store a set of marks for a student, then we use one dimensional array. 
  Int mark[ ] = { 70,68,72,60,75,74}; 
The elements of an array are stored in contiguous locations of memory.  

70 

68 

72 

60 

75 

74 

2.3.1.2 Creating an Array 
    Arrays must be declared and created in the computer memory before they are used. 
Creation of an array involves three steps. They are 
(i).  Declaring an array 
(ii). Allocate memory space 
(iii). Store the values 
(i) Declaring the array 

It may be declared in two ways. 
 
    datatype   arrayname[ ];   or  datatype [ ] arrayname; 
    where  
datatype – valid datatype 
arrayname  - name of the array 
 eg:   int  x[ ];     or  int [ ] x; 
(ii) Allocate memory space 

The memory space of an array is allocated using new operator. 
   arrayname = new  datatype[size]; 
where  
datatype – valid datatype 
arrayname  - name of the array 
size   - specifies the total number of elements to be stored 
new – operator to allocate memory space 
    eg:   x = new  int [10];   
(iii) Store the values 

After creating an array, the values should be stored in it using the following syntax 
      arrayname [index]  =  value; 
   where  
arrayname  - name of the array 
 index- specifies the position of individual element 
value-  constant  
      eg:  x[1]=40; 
 NOTE : we also create an array using the following syntax. 
  datatype   arrayname[ ]= new  datatype[size]; 
 
eg: int y[ ]= new int[5]; 



35 

 

2.3.1.3 Array processing 
We know that array is a group of  data of same data type, so to use the array elements we 
use any one of the looping statements. Normally for loop is used. 
Example: To find the average of array elements 
public class Example1 
 { 
     public static void main(String args[ ])  
{ 
 double sum=0,avg;        
 int x[]= {22,32,42,52,62}; 
  for( int i=0; i<5; i++) 
  sum= sum+x[i]; 
 avg = sum/5; 
 System.out.println("Average of array elements are:"+avg); 
         } 
} 
Example: To find the largest array element 
public class Example2 
 { 
     public static void main(String args[ ])  
{ 
 int max;       
 int x[]= {122,12,40,5,68}; 
 max = x[0]; 
  for( int i=1; i<5; i++) 
  if (x[i]> max) max= x[i]; 
 System.out.println("Largest array element is :"+max); 
         } 
} 
2.3.1.4 Multi Dimensional Array 
 In Java, a multidimensional array is an array of arrays. An array with more than one 
subscripts is known as multi dimensional array. 
 
              datatype   arrayname[ ] [ ]….[ ] = new  datatype[size 1] [size 2] ….[size n]; 
eg: int  a[ ] [ ] [ ] = new int [3][3][3]; 
Example:To read and display the elements of matrix 2 x 2 
import java.io.*; 
public class Example3 
 { 
     public static void main(String args[ ]) throws IOException 
{ 
      
 int x[][] = new int[2][2]; 
 int i,j; 
 DataInputStream d1= new DataInputStream(System.in); 
 System.out.println("Enter array elements one by one"); 
 for( i=0; i<2; i++) 
 for( j=0; j<2; j++) 
  x[i][j]= Integer.parseInt(d1.readLine()); 
 System.out.println("Matrix  elements "); 
 for( i=0; i<2; i++) 
 for( j=0; j<2; j++) 
  System.out.print("\t"+x[i][j]);      }} 



36 

 

2.3.2 Vectors 
Vector 
 Vector is a class which is used to create dynamic array. Dynamic array means size 
can be changed at run time. It also stores different types of objects. Vector class is defined 
in java.util package. 
Creation of Vector 
A Vector can be created in three ways. 

Description Syntax Example:: 

To create an empty 
vector with the default 
initial capacity of 10. 

Vector    vectorname = new Vector( ); Vector v1= new Vector ( );  
 
It creates vector v1 of 
capacity  10. 

To create a vector 
with the given 
capacity  

Vector    vectorname = new Vector(capacity); Vector v2= new Vector (5 );  
 
It creates vector v2 of given 
capacity 5. 
 

To create a vector 
with the given  
capacity  & 
increment. 

Vector    vectorname = new Vector(capacity,n); Vector v3= new Vector (5,2 ); 
 
It creates a vector v3 of 
given capacity 5  and 
Increment is 2. 

 
Methods 
 All  the vector methods are called using the syntax 
  Vectorobject.methodname(); 

Sl. 
No 

Method name Use Example:: 

1. int capacity() 
 

This method returns 
the  maximum 
number of objects to 
be stored in the 
vector 

Vector v2= new Vector (5 );  
v2.capacity(); 
 

2. int size() It returns the number 
of objects present in 
the vector 

Vector v2= new Vector (5 );  
v2.size(); 
 

3. void addElement(Object )  It inserts the object at 
the end of the vector. 

Vector v2= new Vector (5 );  
v2.addElement(“Fruits”); 
 

4. void insertElement(Object,n )  It inserts the object at 
the nth position of 
the vector. 

Vector v2= new Vector (5 );  
v2.insertElement(“Mango”,4); 
 

5. Object elementAt(int n) It returns the element 
present at the nth 
position of the  vector 

Vector v2= new Vector (5 );  
v2.elementAt(2); 
 

6. boolean removeElement(Object ) It removes the 
specifed object from 
the vector. 

Vector v2= new Vector (5 );  
v2.removeElement(“Fruits”); 
 

7. boolean removeElementAt (n) It removes the object 
at  the nth position of 
the vector. 

Vector v2= new Vector (5 );  
v2.removeElementAt(3); 
 

8. boolean removeAllElements( ) It removes all the Vector v2= new Vector (5 );  



37 

 

elements of the 
vector  

v2.removeAllElements( ); 
 

9. copyInto(arrayname) It copies all the 
objects of vector into  
array 

Vector v2= new Vector (5 );  
v2.copyInto(x); 
 

 
Example: 
import java.util.*; 
public class Example4 
 { 
     public static void main(String args[ ])  
{ 
       Vector v1 = new Vector(2);          
       System.out.println("Initial Size is: "+v1.size());      
       System.out.println("Initial capacity  is: "+v1.capacity());    
 v1.addElement("C");        
         v1.addElement("C++"); 
         v1.addElement("Java"); 
        System.out.println("Size after adding elements: "+v1.size());       
       System.out.println(" capacity after adding elements: "+v1.capacity()); 
 v1.insertElementAt("VB",2);        
         for(int i=0; i<v1.size();i++)       
             System.out.println("\t Elements are:" +v1.elementAt(i)); 
 v1.removeElementAt(1); 
 System.out.println("Size after removing element: "+v1.size());  
 for(int i=0; i<v1.size();i++)       
              System.out.println("\t Elements are:" +v1.elementAt(i)); 
         } 
} 
Difference between Array and Vector 

Array Vector 

Size of the array cannot be changed Size of the vector can be changed 

Values of  same data types can be stored Objects of different data types can be stored 

 
2.3.3 ArrayList  
 ArrayList class is used to create  dynamic array. Dynamic array means,the size of the array 
can be changed at the run time. 
Array lists are created with an initial size. When this size is exceeded, it  is automatically 
enlarged. When objects are removed, the array may be shrunk. It is defined in java.util 
package. 
Creation 
An  ArrayList can be created in two ways. 

Description Syntax Example:: 

To create an empty 
array list with the 
default initial 
capacity of 10. 

ArrayList    name = new ArrayList ( ); ArrayList  a1= new ArrayList ( );  
 
It creates ArrayList a1 of 
capacity  10. 
 

 
 
Methods 
All  the ArrayList methods are called using the syntax 
  ArrayListname.methodname(); 



38 

 

Sl. 
No 

Method name Use Example:: 

1. 
 

int size() This method returns 
the  number of 
elements in this list. 

ArrayList  a1= new ArrayList ( ); 
a1.size(); 

2. boolean add(Object) It inserts the object at 
the end of the list. 

ArrayList  a1= new ArrayList ( ); 
a1.add(“oops”); 

3. void add(int n, Object) It inserts the object at 
the nth position of 
the list 

ArrayList  a1= new ArrayList ( ); 
a1.add(3,“oops”); 

4. Object get(int n) It returns the element 
at the nth position in 
this list. 

ArrayList  a1= new ArrayList ( ); 
a1.get(2); 

5. Object set(int n, Object) It replaces the 
element present at 
the nth position  with 
the given object. 

ArrayList  a1= new ArrayList ( ); 
a1.set(3,“java”); 

6. Object remove(int n) It removes the 
element at the nth 
position of the  list. 

ArrayList  a1= new ArrayList ( ); 
a1.remove(2); 

7. void clear() It removes all of the 
elements from this 
list. 

ArrayList  a1= new ArrayList ( ); 
a1.clear(); 

 
Example:  
import java.util.*; 
public class Example5 
 { 
     public static void main(String args[ ])  
{ 
       ArrayList a1 = new ArrayList();          
       System.out.println("Initial Size is: "+a1.size());      
       a1.add("C");        
           a1.add("C++"); 
           a1.add("Java"); 
           System.out.println("Size after adding elements: "+a1.size());       
       a1.add(2,"VB");  
      System.out.println("After adding element: "); 
           for(int i=0; i<a1.size();i++)       
            System.out.println("\t Elements are:" +a1.get(i)); 
 a1.remove(0); 
 a1.set(1,"c#"); 
 System.out.println("After removing & changing element: "); 
 for(int i=0; i<a1.size();i++)       
            System.out.println("\t Elements are:" +a1.get(i)); 
  a1.clear(); 
 System.out.println("Size after removing element: "+a1.size()); 
         } 
} 
 
 
 



39 

 

Advantages of ArrayList over Array 
1. Its  size can be changed at the run time.  

 
2. It stores different type of objects. 

 
3. It  has many methods to manipulate the stored objects. 

 
2.3.4 Wrapper class 
Wrapper class in java provides the mechanism to convert primitive data type  into object and 
object into primitive data type. It is defined in java.lang package. 

PRIMITIVE DATA TYPE WRAPPER CLASS 

byte Byte 

short Short 

int Integer 

long Long 

float Float 

double Double 

char Character 

boolean Boolean 

 
 Using wrapper classes, we can perform the following conversions: 

1. Converting primitive data type to object 
2. Converting object to primitive data type  
3. Converting primitive data type to string object 
4. Converting string object to primitive data type  
5. Converting string object to number object 

 
1. Converting primitive data type to object 

 
      To Convert primitive data type to object, constructor is used. 

classname objectname = new classname(value); 
 
        eg: 1. Convert int to integer object     ----------    Integer  k1= new Integer (25); 
    2. Convert double to double object     ----------    Double m1= new Double(125.98); 
 

2. Converting object to primitive data type 
 

To convert object to primitive data type, typeValue()  is used. Here type specifies the 
primitive datatype. 

datatype  varaiblename = objectname. typeValue(); 
         
eg: 1. Convert Integer to int object     ----------    int  p1= k1. intValue(); 

 2. Convert float object  to float   ----------    float  a1= m1.floatvalue(); 



40 

 

3. Converting primitive data type to string object 
 
      To Convert primitive data type to stringobject, toString() is used. 

String objectname =  classname.toString(value); 
 
        eg: 1. Convert int to string object     ----------      String  s1= Integer.toString(57); 
   2. Convert double to string object     ----------    String  s3= Double.toString(57.3421); 
 

4. Converting string object to primitive data type 
 
   To convert object to primitive data type, parsetype()  is used. Here type specifies the 
primitive datatype. 

datatype  varaiblename = classname.parsetype(stringobject); 
         
       eg: 1. Convert string object to int     ----------      int  p1= Integer.parseInt(s1); 
    2. Convert string  object to float   ----------    float  a1= Float.parseFloat(s3); 
 

5. Converting string object  to number object 
 
      To Convert string object  to number object,valueOf() method is used. 

classname objectname =  classname.valueOf(stringobject); 
 
        eg: 1. Convert string object to Integer object  ----  Integer k1= Integer.valueOf(s1); 
   2. Convert string object to Double object     ----    Double m1= Double.valueOf(s3); 
 
  



41 

 

REVIEW QUESTIONS 
PART  -  A 

1. What is a variable? 
2. Define constant. 
3. What is mean by type casting? 
4. What is the use of break statement? 
5. What is the use of continue statement? 
6. Define array. 
7  What is one dimensional array?. 
8. What is array processing?. 
9. Define vector. 
10.What is the use of addElement()?. 
11.List the differences between array and vector. 
12.What is  Arraylist? 
13.List the advantages of arraylist over array. 
14.What is the use of clear()?. 
15.What is wrapper class?. 
16.List any 4  wrapper classes. 
 
         PART  -  B 
1.  Write notes on scopes of variables. 
2. What are labeled loops? 
3. Write the difference between while and do while statement? 
4. Define multidimensional array. Explain 
5. Write a note on creating a vector. 
6. Which methods are used to delete elements from vector?.Explain. 
7.  Write a note on creating an arraylist. 
8.  Name the methods used to add elements to an arraylist and explain. 
 
        PART  -  C 
1. Explain the various control statements in java. 
2. Explain the various operators available in java. 
3. Explain the switch statement with example. 
4. What are the looping statements available in java ? Explain. 
5. Explain the creation of  one dimensional array.  
6.  Write a program to find the smallest elements in an array. 
7. Write a program to find the average of N elements in an array. 
8. Explain in detail about methods of Vector class. 
9. Explain methods of ArrayList class. 
10. Explain about wrapperclass. 
 
 
     
 
 
 
 
 
 
 
 
 
 



42 

 

UNIT III STRINGS, CLASSES AND INTERFACES 
 
OBJECTIVES 
 
To Understand  the concepts of strings 
To know to work with string methods 
To learn the creation of classes and objects 
To know about the interfaces. 
 
3.1 Strings:  
 In java, string is basically an object that represents sequence of char values. An 
array of characters works same as java string. For example: 

char[] ch={'j','a','v','a'};   

String s=new String(ch);  is same as: 

String s="java";   

 String is probably the most commonly used class in Java’s class library. The obvious 
reason for this is that strings are a very important part of programming. The first thing to 
understand about strings is that every string  is actually an object of type String. Even string 
constants are actually String objects.  
For example, in the statement 

System.out.println("This is a String, too"); 
the string “This is a String, too” is a String constant. 

The second thing to understand about strings is that objects of type String are 
immutable;once a String object is created, its contents cannot be altered. Java defines a 
peer class of String, called StringBuffer, which allows strings to be altered, so all of the 
normal string manipulations are still available in Java. 
 
3.1.1.String Array   
 A Java String Array is an object that holds a fixed number of String values. 
String Array Declaration 
Square brackets is used to declare a String array. There are two ways of using it. The first 
one is to put square brackets after the String reserved word. For example:  
 

String[] thisIsAStringArray; 
 
Another way of declaring a String Array is to put the square brackers after the name of the 
variable. For example: 
 

String thisIsAStringArray[]; 
 

Both statements will declare the variable "thisIsAStringArray" to be a String Array. 
Note that this is just a declaration, the variable "thisIsAStringArray" will have the value null. 
And since there is only one square brackets, this means that the variable is only a one-
dimensional String Array.  
String Array Declaration With Initial Size 

Arrays are usually used when how many objects are needed. Hence, arrays are 
usually declared with an initial size. Here is an example:  
 

String[] thisIsAStringArray = new String[5]; 
 



43 

 

This will declare a String Array with 5 elements. Each element can be accessed sing 
index that starts with 0. The fist element is "thisIsAStringArray[0]", the second element is 
"thisIsAStringArray[1]", and so on. Here is an example of declaring a String Array with size 5 
and assigning values to each element:  
 

String[] thisIsAStringArray = new String[5]; 
thisIsAStringArray[0] = "AAA"; 
thisIsAStringArray[1] = "BBB"; 
thisIsAStringArray[2] = "CCC"; 
thisIsAStringArray[3] = "DDD"; 
thisIsAStringArray[4] = "EEE"; 
Note, since there are only 5 elements and index started from 0, the last index will be 

4. Or we could use the formula ( array length - 1) 
String Array Initialization on Declaration 

Initialization can also be done at the same time as the declaration. Here is an 
example:  
String[] thisIsAStringArray = {"AAA", "BBB", "CCC", "DDD", "EEE"}; 

This will create a String Array of length 5. Element at index 0 will have the value 
"AAA", element at index 1 will have the value "BBB", and so on. Hence, when we run this 
code:  
 

String[] thisIsAStringArray = {"AAA", "BBB", "CCC", "DDD", "EEE"}; 
System.out.println( thisIsAStringArray[0] ); 
System.out.println( thisIsAStringArray[1] ); 
System.out.println( thisIsAStringArray[2] ); 
System.out.println( thisIsAStringArray[3] ); 
System.out.println( thisIsAStringArray[4] ); 

It will produce this output:  
AAA 
BBB 
CCC 
DDD 
EEE 

Another syntax to declare and initialize a String array together is by using the new operator. 
Here is an example:  
String[] thisIsAStringArray = new String[]{"AAA", "BBB", "CCC", "DDD", "EEE"}; 
The behaviour is the same as the example above:  
"String[] thisIsAStringArray = {"AAA", "BBB", "CCC", "DDD", "EEE"};"  
 
String Array Initialization After Declaration 

The code for initializing an array can be separated from the declaration code. This is 
useful when values are not known during declaration. Here is an example:  
 

String[] thisIsAStringArray; 
if (fruits) { 
    thisIsAStringArray = new String[] {"Apple", "Banana", "Orange"}; 
} else { 
    thisIsAStringArray = new String[] {"Asparagus", "Carrot", "Tomato"}; 
} 

Note that the value of the array depends on the value of fruits variable. The array can have 
the values {"Apple", "Banana", "Orange"} if fruits is true, or {"Asparagus", "Carrot", 
"Tomato"} if fruits is false. 
Note that initializing an array will override the old contents of the array. For example 



44 

 

String[] thisIsAStringArray = {"Apple", "Banana", "Orange"}; 
thisIsAStringArray = new String[] {"Asparagus", "Carrot", "Tomato"}; 
System.out.println( thisIsAStringArray[0] ); 
System.out.println( thisIsAStringArray[1] ); 
System.out.println( thisIsAStringArray[2] ); 

The code will have the output below. This is because the old contents {"Apple", "Banana", 
"Orange"}, will be discarded and replaced with the new contents.  

Asparagus 
Carrot 
Tomato 

Also note that even the size of array will be changed if re-initialized. For example:  
 

String[] thisIsAStringArray = {"Apple", "Banana", "Orange"}; 
thisIsAStringArray = new String[] {"Asparagus", "Carrot"}; 
System.out.println( thisIsAStringArray[0] ); 
System.out.println( thisIsAStringArray[1] ); 
System.out.println( thisIsAStringArray[2] ); 

Will have the following output:  
Asparagus 
Carrot 
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2 
 at ArrayTest.main(ArrayTest.java:10) 

The exception is because the thisIsAStringArray variable will only have 2 elements after the 
second initialization.  
 
String Array Length/Size 
The property length of a String Array can be used to determine the number of elements in an 
Array. Here is an example usage:  
 

String[] thisIsAStringArray = {"Apple", "Banana", "Orange"}; 
System.out.println( thisIsAStringArray.length ); 

This will have the output:  
3 

Because there are 3 elements in the declared array.  
 

Iterate Through String Array 
Since the size and contents of a String Array can vary, it is useful to iterate through 

all the values. Here is an example code using style that can run prior to Java 5.  
String[] thisIsAStringArray = {"Apple", "Banana", "Orange"}; 
for( int i = 0; i < thisIsAStringArray.length; i++) 
{ 
    String element = thisIsAStringArray[i]; 
    System.out.println( element );     
} 

The code will start from index 0, and continue upto length - 1, which is the last element of the 
array. This code will run on any version of Java, before of after Java 5 

The code will have the output: 
Apple 
Banana 
Orange 

 
 
 



45 

 

 
 
 
3.1.2.String Methods  

1 char charAt(int index) returns char value for the 

particular index 

2 int length() returns string length 

3 static String format(String format, Object... args)  returns formatted string 

4 String substring(int beginIndex)  returns substring for given 

begin index 

5 String substring(int beginIndex, int endIndex)  returns substring for given 

begin index and end index 

6 static String join(CharSequence delimiter, 

CharSequence... elements) 

returns a joined string 

7 boolean equals(Object another) checks the equality of string 

with object 

8 boolean isEmpty() checks if string is empty 

9 String concat(String str) concatinates specified string 

  10 String replace(char old, char new)  replaces all occurrences of 

specified char value 

   11 static String equalsIgnoreCase(String another)  compares another string. It 

doesn't check case. 

   12 String[] split(String regex, int limit)  returns splitted string 

matching regex and limit 

   13 int indexOf(int ch, int fromIndex)  returns specified char value 

index starting with given 

index 

14 String toLowerCase() returns string in lowercase. 

15 String toUpperCase() returns string in uppercase. 

16 String trim() removes beginning and 

ending spaces of this string. 

 
 

http://www.javatpoint.com/java-string-charat
http://www.javatpoint.com/java-string-length
http://www.javatpoint.com/java-string-format
http://www.javatpoint.com/java-string-substring
http://www.javatpoint.com/java-string-substring
http://www.javatpoint.com/java-string-join
http://www.javatpoint.com/java-string-join
http://www.javatpoint.com/java-string-equals
http://www.javatpoint.com/java-string-isempty
http://www.javatpoint.com/java-string-concat
http://www.javatpoint.com/java-string-replace
http://www.javatpoint.com/java-string-equalsignorecase
http://www.javatpoint.com/java-string-split
http://www.javatpoint.com/java-string-indexof
http://www.javatpoint.com/java-string-tolowercase
http://www.javatpoint.com/java-string-touppercase
http://www.javatpoint.com/java-string-trim


46 

 

// Demonstrating some String methods. 
class StringDemo2 { 
public static void main(String args[]) { 
String strOb1 = "First String"; 
String strOb2 = "Second String"; 
String strOb3 = strOb1; 
System.out.println("Length of strOb1: " + 
strOb1.length()); 
System.out.println("Char at index 3 in strOb1: " + 
strOb1.charAt(3)); 
if(strOb1.equals(strOb2)) 
System.out.println("strOb1 == strOb2"); 
else 
System.out.println("strOb1 != strOb2"); 
if(strOb1.equals(strOb3)) 
System.out.println("strOb1 == strOb3"); 
else 
System.out.println("strOb1 != strOb3"); 
} 
} 

This program generates the following output: 
Length of strOb1: 12 
Char at index 3 in strOb1: s 
strOb1 != strOb2 
strOb1 == strOb3 
 
3.1.3String Buffer Class 
 
 StringBuffer is a peer class of String that provides much of the functionality of 
strings.As String represents fixed-length, immutable character sequences. In 
contrast,StringBuffer represents growable and writeable character sequences.  
StringBuffer Constructors 
StringBuffer defines these four constructors: 
StringBuffer( ) 
StringBuffer(int size) 
StringBuffer(String str) 
StringBuffer(CharSequence chars) 

The default constructor (the one with no parameters) reserves room for 16 characters 
without reallocation. The second version accepts an integer argument that explicitly sets the 
size of the buffer. The third version accepts a String argument that sets the initial contents of 
the StringBuffer object and reserves room for 16 more characters without 
reallocation.StringBuffer allocates room for 16 additional characters when no specific buffer 
length is requested, because reallocation is a costly process in terms of time. Also, frequent 
reallocations can fragment memory. By allocating room for a few extra characters, 
StringBuffer reduces the number of reallocations that take place. The fourth constructor 
creates an object that contains the character sequence contained in chars. 
 
length( ) and capacity( ) 
The current length of a StringBuffer can be found via the length( ) method, while the total 
allocated capacity can be found through the capacity( ) method. They have the following 
general forms: 

int length( ) 
int capacity( ) 



47 

 

Here is an example: 
// StringBuffer length vs. capacity. 
class StringBufferDemo { 
public static void main(String args[]) { 
StringBuffer sb = new StringBuffer("Hello"); 
System.out.println("buffer = " + sb); 
System.out.println("length = " + sb.length()); 
System.out.println("capacity = " + sb.capacity()); 
} 
} 

Here is the output of this program, which shows how StringBuffer reserves extra space for 
additional manipulations: 

buffer = Hello 
length = 5 
capacity = 21 
Since sb is initialized with the string “Hello” when it is created, its length is 5. Its 

capacity is 21 because room for 16 additional characters is automatically added. 
 
setLength( ) 

To set the length of the buffer within a StringBuffer object, use setLength( ). Its 
general form is shown here: 

void setLength(int len) 
Here, len specifies the length of the buffer. This value must be nonnegative. 

 
charAt( ) and setCharAt( ) 
 

The value of a single character can be obtained from a StringBuffer via the charAt() 
method.The value of a character within a StringBuffer using setCharAt( ). Their general 
forms are shown here: 

char charAt(int where) 
void setCharAt(int where, char ch) 
For charAt( ), where specifies the index of the character being obtained. For 

setCharAt( ), where specifies the index of the character being set, and ch specifies the new 
value of that character. For both methods, where must be nonnegative and must not specify 
a location beyond the end of the buffer. 
The following example demonstrates charAt( ) and setCharAt( ): 

// Demonstrate charAt() and setCharAt(). 
class setCharAtDemo { 
public static void main(String args[]) { 
StringBuffer sb = new StringBuffer("Hello"); 
System.out.println("buffer before = " + sb); 
System.out.println("charAt(1) before = " + sb.charAt(1)); 
sb.setCharAt(1, 'i'); 
sb.setLength(2); 
System.out.println("buffer after = " + sb); 
System.out.println("charAt(1) after = " + sb.charAt(1)); 
} 
} 

Here is the output generated by this program: 
buffer before = Hello 
charAt(1) before = e 
buffer after = Hi 
charAt(1) after = i 



48 

 

 
append( ) 
The append( ) method concatenates the string representation of any other type of data to 
the end of the invoking StringBuffer object. It has several overloaded versions. Here are a 
few of its forms: 

StringBuffer append(String str) 
StringBuffer append(int num) 
StringBuffer append(Object obj) 
String.valueOf( ) is called for each parameter to obtain its string representation. The 

result is appended to the current StringBuffer object. The buffer itself is returned by each 
version of append( ). This allows subsequent calls to be chained together, as shown in the 
following example: 

// Demonstrate append(). 
class appendDemo { 
public static void main(String args[]) { 
String s; 
int a = 42; 
StringBuffer sb = new StringBuffer(40); 
s = sb.append("a = ").append(a).append("!").toString(); 
System.out.println(s); 
} 
} 

The output of this example is shown here: 
a = 42! 
 
insert( ) 

The insert( ) method inserts one string into another. It is overloaded to accept values 
of all the simple types, plus Strings, Objects, and CharSequences. Like append( ), it calls 
String.valueOf( ) to obtain the string representation of the value it is called with. This string 
is then inserted into the invoking StringBuffer object. These are a few of its forms: 
StringBuffer insert(int index, String str) 
StringBuffer insert(int index, char ch) 
StringBuffer insert(int index, Object obj) 
Here, index specifies the index at which point the string will be inserted into the invoking 
StringBuffer object. 
The following sample program inserts “like” between “I” and “Java”: 

// Demonstrate insert(). 
class insertDemo { 
public static void main(String args[]) { 
StringBuffer sb = new StringBuffer("I Java!"); 
sb.insert(2, "like "); 
System.out.println(sb); 
} 
} 

The output of this example is shown here: 
I like Java! 

 
reverse( ) 

The characters can be reversed within a StringBuffer object using reverse( ), shown 
here: 

StringBuffer reverse( ) 
This method returns the reversed object on which it was called. The following program 
demonstrates reverse( ): 



49 

 

// Using reverse() to reverse a StringBuffer. 
class ReverseDemo { 
public static void main(String args[]) { 
StringBuffer s = new StringBuffer("abcdef"); 
System.out.println(s); 
s.reverse(); 
System.out.println(s); 
} 
} 

Here is the output produced by the program: 
abcdef 
fedcba 

 
delete( ) and deleteCharAt( ) 

Deleting characters within a StringBuffer by using the methods delete( ) and 
deleteCharAt( ). These methods are shown here: 

StringBuffer delete(int startIndex, int endIndex) 
StringBuffer deleteCharAt(int loc) 

The delete( ) method deletes a sequence of characters from the invoking object. Here, 
startIndex specifies the index of the first character to remove, and endIndex specifies an 
index one past the last character to remove. Thus, the substring deleted runs from startIndex 
to endIndex–1. The resulting StringBuffer object is returned. 
 
The deleteCharAt( ) method deletes the character at the index specified by loc. It returns 
the resulting StringBuffer object. 
 
Here is a program that demonstrates the delete( ) and deleteCharAt( ) methods: 

// Demonstrate delete() and deleteCharAt() 
class deleteDemo { 
public static void main(String args[]) { 
StringBuffer sb = new StringBuffer("This is a test."); 
sb.delete(4, 7); 
System.out.println("After delete: " + sb); 
sb.deleteCharAt(0); 
System.out.println("After deleteCharAt: " + sb); 
} 
} 

The following output is produced: 
After delete: This a test. 
After deleteCharAt: his a test. 
 
replace( ) 

To replace one set of characters with another set inside a StringBuffer object by 
calling replace( ). Its signature is shown here: 
StringBuffer replace(int startIndex, int endIndex, String str) 

The substring being replaced is specified by the indexes startIndex and endIndex. 
Thus, the substring at startIndex through endIndex–1 is replaced. The replacement string is 
passed in str The resulting StringBuffer object is returned. 
 

The following program demonstrates replace( ): 
// Demonstrate replace() 
class replaceDemo { 
public static void main(String args[]) { 



50 

 

StringBuffer sb = new StringBuffer("This is a test."); 
sb.replace(5, 7, "was"); 
System.out.println("After replace: " + sb); 
} 
} 
Here is the output: 

After replace: This was a test. 
 
3.2 Classes and objects 
 
A Java program must be encapsulated in a class that defines the state and behavior of basic 
program components known as objects.  Classes create objects and objects use methods to 
communicate between them. 
 
 Classes contain a group of logically related data items (called as fields) and functions 
(called as methods) that operate on them.  Calling a specific method in an object is 
described as sending the object a message. 
 
3.2.1 Defining a class 
 
 A class is a user defined data type with a template that serves to define its 
properties. Objects are nothing but instances of classes.  They can be created using 
declarations.  The basic form of a class definition is  
 
class classname [extends superclassname] 
     { 
 [Variables declaration;] 
 [Methods declaration;] 
      } 
 
 Everything inside square bracket is  optional.  Classname and superclassname are any 
valid Java identifiers.  The keyword extends indicates that the properties of the super class 
are extended to the sub class.  A class can have empty body. 
 
Eg; - class Empty 
 { 
 } 
 
 By convention, all class names start with upper case letter. 
3.2.1.1 Adding variables 
 
 Data in a class is encapsulated by placing data fields inside the body of the class 
definition.  These variables are called as instance variables and they are created whenever 
an object of the class is instantiated.  Instance variables are declared in the same way as 
local variables. 
 
 
Eg; - class Rectangle 
      { 
  int length; 
  int width; 
      } 
 



51 

 

 Here, length and width are two integer type instance variables.  They do not occupy 
any memory space.  They are also called as member variables. 
 
3.2.1.2 Adding methods (Defining a method) 
 
 A class can have any no. of methods called as instance methods.  Methods are used 
to manipulate the data contained in the class. Method definitions should be present inside 
the class immediately after the instance variables declarations.  A method is of the form 
 
 type method name (parameter list) 
 { 
  method body; 
 } 
  
where  

 type can be either user defined or class type.  It specifies the type of value 
returned by the method.  The type is void, if the method doesn’t return any 
value.   

 The method name is any valid identifier name.  

 The parameter list contains list of variable names and their types, which act 
as input to the method separated by commas.  The parameter list can be 
empty but the parentheses are must.   

 The body contains a set of statements that perform operations on the data. 
 
Eg; - class Rectangle 
 { 
  int len, wid; 
  void getData (int x, int y) 
     { 
   len =x; 
   wid =y; 
      } 
  int recArea ( )  
    { 
   int area = len * wid; 
   return (area);  
   } 
 } 
 In the parameter list, the variable names should be declared independently with 
types for each of them separated by commas. 
 
 Instance variables and methods in classes are accessible by all the methods in a 
class but a method cannot access the variables declared in other methods. 
 
3.2.1.3 Creating objects (initializing an object) 
 
 An object in Java is a block of memory having enough space to store all instance 
variables.  Objects can be created using the new operator which creates an object of the 
specified class and returns a reference to that object .The general form for creating an object 
is  
 
 classname object; 
 object = new classname( ); 



52 

 

 
 where classname is any already defined class name and object is the name of the 
object. 
 
 The first statement declares a variable to hold the object reference. 
            The second statement assigns the object reference to the variable. 
 
Eg; -    Rectangle rect1; 
 rect1 = new Rectangle( ); 
 
 Statement    Action    Result 

Rectangle rect1;  declare   
 rect1 = new Rectangle( ); instantiate 
 
 The declaration and instantiation can be combined into a single statement  
 classname object = new classname( ) ;  
Eg;-  
 Rectangle rect1 = new Rectangle( ); 
 
 Any no. of objects can be created to a class 
Rectangle rect1= new Rectangle( ); 
Rectangle rect2= new Rectangle( ); 
 
 Any no. of references can also be created to an object 
Rectangle rect1 = new rectangle( ); 
Rectangle rect2 = rect1; 
 
 
 
 
 
3.2.1.4 Accessing class members 
 
 Each object has its own set of variables and methods.  We cannot access these 
variables and methods directly from outside the class.  For this purpose, the dot operator is 
used.  Its general from is  
 
 objectname.variablename 
 objectname.methodname (parameter list) 
 
 where  

 objectname is the name of the object 

 variablename is the name of the instance variable  

 methodname is the name of the method  

 parameter list is a list of actual values separated by commas. 
Eg;- 
 rl.len =15; 
 rl.wid = 10; 
 r2.len =20; 
 r2.wid =12; 
 
Thus, we can assign values to instance variables 
 

Rectangle object 



53 

 

            R1.length             r2.length 
   
            R1.width                      r2.width 
 
  
We can also assign values to variables using methods declared inside the class 
 
Rectangle r1 = new Rectangle( ); 
rl.getData(15,10); 
 
  R1.length 
 
 
 R1.width 
 
We can compute the area  
 
             i)using assignment statement. 
 int area1 = rl.len * rl.wid; 
 
ii) by calling the rectArea( ) method declared inside the Rectangle class 
int area1 = rl.recArea( );  
 
Eg;- class Rectangle 
 { 
  int length, width; 
  void getData(int x, int y) 
        { 
   length=x; 
   width=y; 
        } 
  int rectArea ( ) 
        { 
   int area = length * width; 
   return (area); 
         } 
 } 
class Rectarea 
      { 
 public static void main (String args[]) 
  {      
  int area1, area2; 
  Rectangle rect1 = new Rectangle( ); 
  Rectangle rect2 = new Rectangle( ); 
  rect1.length =15; 
  rect2.width =10; 
  area1 = rect1.length * rect1.width; 
  rect2.getData (20, 12); 
  area2 = rect2.rectArea( ); 
  System.out.println (“Area of rectangle 1 = “ + area1); 
  System.out.println (“Area of rectangle 2 =” + area2); 
    } 
    } 

  15 

 10 

 20 

 12 

 15 

 10 



54 

 

 
3.2.2 Constructors 
 
 A constructor is a special method used to initialize an object at the time of creation.  
Its general form is  
 
 Constructor name (arguments) 
        { 
               Initialization statements; 
         } 
 
where  constructor name is same as that of the class name. Constructors return instance of 
a class and hence they do not specify a return type.  A constructor may or may not have 
arguments. 
Eg;- 

1) constructor  without arguments  
Rectangle ( ) 
    { 
length= 15; 
width = 10; 
    } 

2) Constructor with arguments 
Rectangle (int x, int y) 
   { 
length =x; 
width = y; 
   } 
 
eg;- class Rectangle 
        { 
 int length, width; 
 Rectangle (int x, int y) 
     { 
  length =x; 
  width = y; 
      } 
 int rectArea( ) 
    { 
  return (length * width); 
     } 
        } 
  class RectArea 
        { 
 public static void main (String  args[ ]) 
    { 
  Rectangle r1 = new Rectangle(15, 20); 
  int area1 = r1.rectArea( ); 
  System.out.println(“Area of rectangle =” + area1); 
 
     } 
        } 
 
 



55 

 

 
3.2.3 Method overloading 
 
 Method overloading is used when objects are required to perform similar tasks but 
using different input parameters.  All the methods have same name but they have different 
parameter lists and different definitions.  When a method is called, java first matches the 
method name and then it matches the number and type of parameters to decide which one 
of the definitions is to be executed.  This process is known as polymorphism. 
 
Eg;- class Assign 
 { 
  int a,b,c; 
  void assignData(int x) 
   { 
    a=x; 
   } 
  void assignData(int x, int y) 
   { 
    a=x; 
    b=y; 
   } 
  void assignData(int x, int y, int z) 
   { 
    a=x; 
    b=y;  
    v=z; 
   } 
  void print ( ) 
   { 
    System.out.println (“a=+a); 
    System.out.println (“b=”+b); 
    System.out.println (“c=”+c); 
   } 
`  public   static void  main (String args[] ) 
   { 
    Assign  obj = new Assign ( ); 
    Obj.assignData(1); 
    Obj.print( ); 
    Obj.assignData(2,3); 
    Obj.print( ); 
    Obj.assignData(4,5,6);  
    Obj.print( ); 
   } 
 } 
 
3.2.4 Static members 
 
The static members can  be declared as common to all the objects and accessed without 
using a particular object.  
 
Example:       static  int count; 
                       static  float max (float x, float y); 
 



56 

 

The member that are declared as static are called static members. Static variables and static 
methods are also called as class variables and class methods. 
 
Eg:- 
  class mathoperation 
      { 
           static  float mul (float x, float y);  
            { 
                 return x*y; 
             } 
             static  floatdivide (float x, float y); 
                 { 
                   return x/y; 
                 } 
        } 
 class mathapplication 
        { 
              public static void main (String args[]) 
              { 
                     float a = mathoperation.mul (4.0, 5.0); 
                     float b = mathoperation.divide (a, 2.0); 
                     System.Out.println (“b=”+b); 
               } 
         } 
 
Output: 
     b = 10.0 
 
Note: 

1. Static methods are called using the class name. 
2. Static methods can only call other static methods. 
3. Static methods can only access static data.. 
4. Static methods cannot refer to this or super in any way. 

 
3.2.5 Nesting of methods 
 
 A method can be called by using only its name by another method of the same class. This is 
known as nesting of methods. 
Eg:-  
class nesting 
 { 
      int m, n; 
      nesting(int x, int y)  // constructor method 
       { 
             m =x; 
              n = y; 
        } 
                  int largest () 
        { 
                         if (m>= n) 
  return (m); 
               else 
  return (n); 



57 

 

         }  
       void display() 
  { 
         int large = largest();  // calling a method 
         System.Out.println(“ largest value = “+ large); 
 } 
   } 
 
Output: 
largest value = 50 
 
 A method can call any number of methods. It is also possible for a called  method to 
call another method. 
 
3.2.6 this keyword 
 
 Sometimes a method will need to refer to the object that invoked it.  this keyword is 
defined for the purpose.  It can be used inside any method to refer to the current object.  this 
always refers to the object on which the method was invoked.  this can be used anywhere, 
where a reference to an object of the current class type is permitted. 
 
Box (double w, double h, double d) 
 { 
  this.width = w; 
  this.height = h; 
  this.depth = d; 
 }  
 
 When a local variable has the same name as an instance variable, it hides the 
instance variable.  To resolve this problem, this keyword can be used.  
 
Box (double width, double height, double depth) 
 { 
  this.width = width; 
  this.height = height; 
  this.depth = depth; 
 } 
 
3.2.7 Command line arguments 
 
 If our programs have to act in a particular way depending on the input given at the 
time of execution, command line arguments are used. Command line arguments are 
parameters that are supplied to the program at the time of invoking it for execution. 
 
Eg;- 
class Comlinetest 
     { 
 public static void main (String args []) 
      { 
  int count, i=0; 
  String s; 
  count =args.length; 
  System.out.println (“No. of arguments =”+count); 



58 

 

  while (i<count) 
     { 
   s=args [i]; 
   i=i+1; 
   System.out.println (i + ”. ”+”java is”+s); 
     } 
      } 
   } 
 
Compile using 
 javac comlinetest.java 
 
Run using 
 java comlinetest simple object_oriented distributed robust secure  
 
 The command line arguments are passed to the program through the array args.  
The command line has 5 arguments.  They are assigned to the array args as follows 
args[0] =”simple” 
args[1] = “object_oriented” 
args[2] = “distributed” 
args[3] = “robust” 
args[4] = “secure” 
 
Output 
      No. of arguments =5 

1. java is simple 
2. java is object oriented 
3. java is distributed 
4. java is robust 
5. java is secure 

 
3.3 Inheritance 
 
 The process of deriving a new class form an existing one is called as inheritance.  
The old class is called as the base class or super class or the parent class and the new 
class is known as derived class or subclass or child class.  The subclass inherits all the 
variables and methods of the super class plus its own variables and methods. 
 
3.3.1 Types of inheritance 
 

a) Single inheritance – A subclass is derived from only one super class. 
 
 
 
 
  

b) Multiple inheritances – A subclass is derived from more than one super class 
 
 
 
 
  

A 

B 

A 

C 

B 



59 

 

 Java doesn’t support multiple inheritance.  This concept is implemented using a 
secondary inheritance path in the form of interfaces.  
 
c) Hierarchical inheritance – More than one subclass is derived from a super class. This can 
be extended to any no. of levels. 
 
 
 
 
 
 
 D) Multilevel inheritance - A sub class is derived from another derived class. 
 
 
 
 
 
 
 
 
3.3.2 Defining a subclass 
 
A subclass is defined as follows  
 
class subclassname extends superclassname  
  { 
     variables declaration; 
     methods declaration; 
  } 
 
 The keyword extends signifies that the properties of the super class are extended to 
the subclass.  The subclass will have its own variables and methods as well as that of the 
super class. 
 
Eg;-  
class Rect 
    { 
 int l,b; 
 Rect (int x, int y) 
      { 
  l=x; 
  b=y; 
      }  
 int area ( ) 
     { 
  return (l*b); 
     } 
    } 
class Box extends Rect 
    { 
 int h; 
 Box (int a, int b, int ( ) 
        { 

A 

B C D 

A 

B 

C 



60 

 

  super (a, b); 
  h=c; 
        } 
 int vol ( ) 
       { 
  return  (l*b*h); 
       } 
    } 
class Volume 
     { 
 public static void main (String args[ ]) 
       { 
  Box b1 = new Box 10,10,10); 
  int a = b1.area( ); 
  int v = b1.vol( ); 
  System.out.println(“Area =” +a); 
  System.out.println(“Volume=” +v); 
      } 
     } 
  
 The program defines a class Rect and extends it to another class box.  The 
constructor in the derived class uses the super keyword to pass values that are required by 
the base class constructor. 
 
3.3.2.1 Subclass constructor 
 
 It is used to construct the instance variables of both the sub class and the super 
class.  It uses the keyword super to invoke the constructor of the super class. 
 
 super(argument list); 
 
 The super keyword can only be used inside a subclass, and it must be the first 
statement within the subclass.  The argument list should match the order and type of 
instance variables declared in the super class. 
 
3.3.3 Multilevel inheritance 
 
 This concept allows us to build a chain of classes 
 
 
 
 
 
 
 
 
  
 The class A serves as a base class for the derived class B which in turn serves as 
the base class for the derived class C .The chain ABC is known as inheritance path. 
 
class Line 
    { 
 int l; 

A 

B 

C 



61 

 

 Line (int x); 
      { 
  l =x; 
       } 
    } 
class Square extends Line 
     { 
 Square (int y) 
         { 
  super (y); 
         } 
 int area ( ) 
        { 
  return l*l; 
        } 
     } 
class Cube extends Square 
    { 
 Cube (int z) 
       { 
  super (z); 
        } 
 int vol ( ) 
        { 
  return l*l*l; 
         } 
    } 
class Main ( ) 
      { 
 public static void main (String args[ ]) 
       { 
  Cube c1 = new Cube(5); 
  System.out.println (“Area=” c1.area  )); 
  System.out.println (“Volume=” c1.vol( )); 
       } 
      } 
3.3.4 Hierarchical inheritance 
 
 
 
 
  
 
 It is the process of deriving classes in a hierarchical manner.  The features of one 
level are shared by many others below the level.  The data items that are common are put 
into the super class.  The classes at the lower level possess all the properties of its superior 
classes. 
 
class Polygon 
     { 
 int noofside; 
 Polygon(int s) 
        { 

A 

B C D 



62 

 

  noofside =s; 
        } 
     } 
class Triangle extends Polygon 
    { 
 intb,h; 
Triangle(int x, int y) 
        { 
  super(3); 
 b = x; 
  h =y; 
         } 
 int area ( ) 
      { 
  return b*h*2; 
       } 
    } 
class Square extends Polygon 
       { 
 int s; 
 Rectangle (int a) 
       { 
  super (4); 
  s = a; 
       } 
 int area ( ) 
      { 
  return s*s; 
      } 
     } 
class Hierarchy 
    { 
 public staic void main (String args[ ]) 
       { 
  Triangle T = new Triangle(10,5); 
  System.out.println(“Triangle”); 
  System.out.println(“No. of sides =” noofside); 
  System.out.println(“Area =” +T.area ( )); 
  Square R = new Square(5);  
  System.out.println(“Rectangle”); 
  System.out.println (“No.of sides =” noofside); 
  System.out.println(“Area=” +R.area ( )); 
      } 
    } 
 
3.3.4 Overriding methods 
 
 Suppose that an already defined method in a super class is redefined with the same 
name, arguments and return type as a method in the subclass.  When the method is called, 
then the method defined in the subclass is invoked and executed and the super class 
method is neglected.  This concept is known as overriding. 
 
 



63 

 

class Super1 
      { 
 int x; 
 Super1 (int a) 
       { 
  x = a; 
       } 
 void disp( ) 
      { 
  System.out.println (“x”= +x); 
       } 
         } 
class Sub extends super1 
       { 
 int y; 
 Sub (int a, int b) 
      { 
  super (a); 
  y = b; 
       } 
 void disp( ) 
                 { 
  System.out.println (“y = “ + y); 
       } 
         } 
class Test 
    { 
 public static void main (String args[ ]) 
       { 
  Sub s1 =new Sub(10,20); 
  sl.disp( ); 
        } 
      } 
 
Output 
 y =20 
 
 If the method in the super class is to be invoked, then the syntax is 
 
  super.superclass method ( ) 
 
 Now, modify the disp( ) method in the class Sub as follows 
void disp ( ) 
    { 
 super.disp( ); 
 System.out.println (“y=” +y); 
     } 
 
Output 
x = 10 
y = 20 
 
 



64 

 

3.3.5 Final variables and methods 
 
 By default, all the methods and variables in super classes can be overridden.  If we 
want to prevent the subclass from overriding the members of the super class, they can be 
declared using the modifier final.  If a method or variable is declared as final, it can never be 
changed.  If we try to change, the compiler generates an error message. 
 
final data type variable = literal; 
final returntype functionname (parameterlist) 
 { 
  method body; 
 } 
eg;- 
class Super1 
      { 
 final int x; 
 Super1 (int a) 
       { 
  x = a; 
        } 
 final void disp( ) 
       { 
  System.out.println (“x=” +x); 
       } 
       } 
class Sub extends Super1 
     { 
 int y; 
 Sub1 (int a, int b) 
       { 
  super (a); 
  y = b; 
        } 
 void print ( ) 
       { 
  super.disp( ) 
  System.out.println (“y=” +y); 
       } 
      } 
class Maintest 
      { 
 public static void main (String args[ ]) 
      { 
  Sub1 s1 = new Sub1(5,10); 
  s1.print ( ); 
      } 
     } 
 
Output 
x = 5 
y = 10 
 
 



65 

 

3.3.5.1 Final classes  
 A final class is defined with the modifier final. If a class is declared as final, then all 
its variables and methods are final and hence it cannot be inherited.  We cannot derive 
subclasses for a final class.  Suppose that we have a final class named xxx 
 final class xxx 
  { 
   …… 
  } 
Then it is impossible to define a new sub class.  Trying to do so will produce an error 
message.  
 
eg:- class yyy extends xxx 
 { 
  …… 
 } 
The above class produces an error message. 
 
3.3.6 Abstract methods and classes 
 
 The modifier abstract when used in method definition indicates that the method must 
always be redefined in a subclass, thus making overriding compulsory.  Its general from is  
 
abstract returntype methodname (parameterlist) 
 { 
  …… 
 } 
  
 When a class contains one or more abstract methods, then it should also be defined 
as abstract.  Its general form is  
 
 abstract class classname 
  { 
   ….. 
  } 
  
 Abstract classes cannot be used to instantiate objects directly.  The abstract methods 
of an abstract class should be redefined in its sub class.  We cannot create abstract 
constructors or abstract static methods. 
 
Eg;-  
abstract class First 
      { 
 int x; 
 abstract void disp( ); 
      } 
class Second extends first 
     { 
 int y; 
 void disp( ) 
       { 
  System.out.println (“x = “ + x); 
  System.out.println (“y =” + y); 
      } 



66 

 

     } 
class Demoabs 
    { 
 public static void main (String args[ ]) 
      { 
  Second obj = new Second( ) ; 
  obj.x =10; 
  obj.y =20; 
  obj.disp( ); 
      } 
    } 
 
Output 
x = 10 
y = 20 
 
3.3.7 Visibility control 
 
 Restricting the access of certain variables and methods from outside the class is 
some times unavoidable. For this visibility modifiers are applied to the instance variables and 
methods. The visibility modifiers are also known as access modifiers. There are five types of 
visibility modifiers. They are    
 
1. public 
2. private  
3.protected 
4.friendly  
5.private protected 
 
3.3.7.1 Public access 
 
 A variable or method declared as public can be accessed from everywhere. 
 
Syntax: 
 public datatype variablename; 
  public returntype methodname() 
  { 
      ---- 
  } 
 
Example:  public int x; 
  public void sum() 
  { 
  
  } 
 
3.3.7.2 Friendly access (Package public) 
 
 A variable or method declared as without any access specifier becomes  friendly or 
package public. It can be accessed by all program in same package. It is the default 
modifier.  
 
 



67 

 

 
Syntax 
 
   datatype variablename; 
 returntype methodname() 
  { 
      ---- 
  } 
 
Example: 
  float y; 
  int add (int x, int y) 
  { 
      ---- 
  } 
 
3.3.7.3 Protected access 
 
 A variable or method declared as protected are visible everywhere in the current 
package and also sub classes in other packages 
 
Example 
 protected int x; 
 protected void add() 
       { 
      ---- 
        } 
 
3.3.7.4 Private access 
 
 A variable or method declared as private are visible only to its own class. 
 
Example 
                 private int x; 
      private void add() 
       { 
      ---- 
        } 
 
3.3.7.5 Private protected 
 
 A variable or method declared as private protected are visible only in sub class in all 
the packages. 
 
Example 
 private protected int x; 
  private protected void add() 
        { 
              ---- 
         } 



68 

 

 
 
3.3.8 Interfaces 
 
 Java doesn’t support multiple inheritance.  Multiple inheritance can be achieved 
through interfaces.  Though a java class cannot be a sub class of more than one super 
class, it can implement more than one interface, thereby enabling us to create classes that 
build upon other classes.   
3.3.8.1 Defining interfaces 
 
 An interface is basically a kind of class.  An interface can define only abstract 
methods and final fields.  Hence an interface does not specify any code to implement these 
methods and data fields contain only constants.  Hence, the class that implements an 
interface should define that code for the implementation of these methods.  
 
 The general from of an  interface definition is  
 interface interfacename 
        { 
  Variables declaration; 
  Methods declaration; 
        } 
 
 The interface name can be any valid Java variable name.  The variables are declared 
as follows 
 Static final datatype variable = value; 
 
All variables are assigned constant values. 
 
 Methods declaration will contain only a list of methods without any body. 
 
Syntax  
 returntype methodname (parameterlist); 
 
 



69 

 

Eg;- interface Area 
 { 
  final static float PI  =3.14f; 
  float compute (float x, float y) 
  void show ( ); 
 } 
 
3.3.8.2 Extending interface 
  
 Interfaces can be extended i.e one interface can be derived from the other one.  This 
is achieved with the help of extends keyword. 
 
interface interfacename extends interfacename 1, interfacename 2 …….. 
 { 
  …… 
 } 
 
eg;- interface Itemconstants 
 { 
  int code = 1001; 
  string name = “Fan”; 
 } 
      interface ItemMethods 
 { 
  void disp( ); 
            } 
      interface Item extends ItemConstants, ItemMethods 
 { 
  …….. 
 } 
  
 The sub interfaces cannot define the methods declared in the super interfaces.  All 
the methods should be defined only in the class that implements the derived interface. 
 
3.3.8.3 Implementing interfaces 
 
 Interfaces are used as super classes whose properties are inherited by classes.  
Hence, it is necessary to create a class that inherits the interface.   
 
class classname implements interfacename 
 { 
  …… 
 } 
class  classname  extends  superclassname   implements  interfacename1, 
         interface name 2….. 
 { 
  ……. 
 } 
 
  
 
 
 



70 

 

 The implementation of interface can take various forms 
 
     Interface 
       Interface class                         interface 
           implementation 
     class           implementation extension              extension 
                
  
 
   
   
   
 
Eg;- 
 
interface Area 
    { 
 final static float pi = 3.14f; 
 float compArea (float x, float .y); 
    } 
class Rectangle implements Area  
     { 
 public float compArea(float x, float y) 
      { 
  return (x*y); 
      } 
      } 
 
class Circle implements Area 
     { 
  public float compArea (float x, float y) 
       { 
  return (pi*x*x); 
       } 
     } 
class Calcarea 
    { 
 public static void main (string args [ ]) 
        { 
  Rectangle r = new Rectangle ( ); 
  Circle c = new Circle ( ); 
  Area a; 
  a = r; 
  System.out.println (“Area of rectangle =” + a.compArea(10,20)); 
  a = c; 
  System.out.println (“Area of circle =” + a.compArea(10,0); 
       } 
    } 
 
Output 
Area of Rectangle = 200 
Area of circle = 314 
 

A 

B 

C 
B 

A 

C 

A 

B 

C 

D 

E 



71 

 

 If a class that implements an interface, doesn’t implement all the methods of the 
interface, the class becomes an abstract class and hence cannot be instantiated. 
 
3.3.8.4 Accessing interface variables 
 
 Interfaces can be used to declare a set of constants that can be used in different 
classes.  This is similar to creating header files.  Such interfaces do not contain methods.  
The constant values are available to any class that implements the interface.  The values 
can be used in any method, as part of variable declaration or anywhere where we can use a 
final value. 
 
Eg;-  
 
interface Cricket 
 { 
  int noofplayers = 11, 
  int noof keepers = 1; 
 } 
class Game implements Cricket 
      { 
 void print ( ) 
     { 
  System.out.println (“No.of players =” +noofplayers); 
  System.out.println (“No.of keepers = “ + noof keepers); 
       } 
    } 
class Header 
    { 
 public static void main (String args [ ]) 
       { 
  Game g = new Game ( ); 
  g.print ( ); 
       } 
     } 
 
Output 
No. of  players = 11 
No. of  keepers = 1 
 
3.3.8.5 Implementing multiple inheritance through interface 
 
class Stud 
     { 
 int rollno; 
 void getNo(int n) 
     { 
  rollno = n; 
     } 
 void putNo( ) 
    { 
  System.out.println (“Roll No. =” + rollno); 
    } 
     } 



72 

 

class Test extends Student 
     { 
 int m1, m2, m3; 
 void getMarks(int x, int y, int z) 
       { 
  m1 = x; 
  m2 = y; 
  m3 = z; 
        } 
 void putMarks( ) 
       { 
  System.out.println(“Mark 1 =” + m1); 
  System.out.println(“Mark 2 =” +m2); 
  System.out.println(“Mark 3 =” +m3); 
        } 
      } 
interface Sports 
{ 
 int bonus = 100; 
 void showBonus ( ); 
} 
Class Result extends Test implements Sports 
     { 
 int total; 
 public void showBonus( ) 
     { 
  System.out.println (“Bonus marks =” +bonus); 
      } 
 void disp( ) 
       { 
  total = m1 +m2 + m3 + bonus; 
  putNo( ); 
  putMarks ( ); 
  showBonus ( ); 
  System.out.println (“Total Score =” total); 
      } 
    } 
class Hybrid 
    { 
 public static void main (String args[ ]) 
       { 
  Result s1 = new Result( ); 
  S1.getNo(98430); 
  S1.getMarks(99,73,87); 
  S1.disp( ); 
      } 
    } 
 
 
 
 
 
 



73 

 

Review Questions 
Part A (2 marks) 
 

1. Define classes and objects. 
2. What are constructors? 
3. What is the use of this keyword? 
4. What is inheritance? 
5. List the different access modifiers. 
6. What are interfaces? 

 
 
Part B (3 marks) 
 

1. How will you define a class. 
2. What are static members? 
3. What are command line arguments? 
4. What are the types of inheritance? 
5. How will you define a subclass? 
6. What are final variables and methods? 
7. What do you mean by abstract classes? 
8. How will you define an interface? 

 
 
Part C (5 marks) 
 

1. Explain how will you create a class with an example. 
2. Explain constructors with example. 
3. Explain method overloading with example. 
4. Explain any one type of inheritance with example. 
5. Explain the different  types of access modifiers? 
6. Explain how will you implement multiple inheritance through interface? 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 



74 

 

Unit IV- PACKAGES, APPLETS, AWT AND EVENT HANDLERS 
Objectives 
 

 To create and access packages 

 To write simple applets 

 To list the types of AWT components 

 To study the various event handlers 
 
4.1 Packages 
 
 Packages act as “containers” for classes.  They provide a functional way of grouping  
classes and /or interfaces together.  Packages help us to reuse the code already created. 
 
Benefits 
 

 We can easily reuse the classes contained in the packages of other programs. 

 Two classes in two different packages can have the same name.  To access a 
particular class, we give the package name and the class name separated by a 
dot.  

 Packages hide their classes from other programs and other packages 

 Packages also provide a way for separating “design” from “coding”. First, we can 
design the classes, decide their relationships and then we can implement the 
code needed for the methods.  Hence, the implementation of any method can be 
changed without affecting the rest of the design. 

 
Classification  
 
 Java packages are classified into 
 

 System packages or JSL (Java Standard Library) or API Packages (Application 
Programmers Interface) –  defined by the manufacturers. 

 User defined packages –   defined by the user.  
 

4.1.1 System packages 
 
The frequently used system packages are 
 

1) java.lang  
 This is the default package that is automatically imported and it contains classes that 
support the java language including  primitive types, strings, Math functions, Threads and 
exceptions. 

2) java.util 
This contains classes for utilities such as vectors, hash tables, random nos., date etc. 
     3)   java.io 
This contains classes for supporting input and output operations. 
     4)  java.awt 
This contains classes for implementing GUI elements such as windows, buttons, lists, 
menus.  
    5)  java.net 
This contains classes for networking with local computers as well as with the internet 
servers. 
    6) java.applet 
  This contains classes for creating and implementing the applets. 



75 

 

 

4.1.1.1 Using System packages 

 The packages are organized in a hierarchical structure.  For example, the java 

package contains the awt package which in turn contains classes for implementing GUI. 

 

    java 

 

 

 

 

 

 

  

There are two ways of accessing the classes stored in a package  

1. By using fully qualified class name 

This is achieved by using the package name containing the class and then appending the 
class name to it using the dot operator.  

Eg;- java.awt.font 

refers to the class font in the awt package which is inturn contained in the java package  

2. Using  import statement 

This is used when either one or more classes belonging to a package are used at one or 
more places in a program.  

Syntax 
import package name.package name.       …….     class name; 
(Or)  
import package name.*; 
The import statement appears before the class definition 
 

java

lang util io awt net applet

awt 

 

 

 

 

 

…... 

Color 

Font 

Graphics 

Image 



76 

 

Eg; -    1) import java.awt.color: 
   imports the class color 
 2) import java.awt.*; 
imports all the classes in the awt package. 
 
4.1.1.2 Naming conventions 
 Any standard identifier can be used as a package name.  By convention, all package 
names start with lowercase letters. 
Eg;- 
 double  y=java.lang.Math.sqrt (x) ; 
 Package names must be unique.  Duplicate names cause runtime errors.  Since, java 
programmers work on Internet, duplicate package names are unavoidable.  Hence, the java 
designers suggest the users to use the domain names as prefix to the package names. 
 
Eg;-   Vnr.VSVP.mypackage 
 
       City  organization   package 
 
4.1.2 Creating packages 
 

1. Create a subdirectory with the same name as that of the package name inside the 
directory where classes that will import the package to be created are stored. 

2. Declare the package using the package statement. This must be the first statement 
in a Java source file.   

 
package packagename; 
 

3. Define new classes for the package.  A package file can have more than one class 
definition.  Declare any one class as public. 

 
public class class name;  
      {  
             …… 
       } 
class class name 2   
      { 
 …… 
       } 
 …… 

4. Store the file with the name same as that of the class name declared as public and 
with extension .java inside the directory with the package name. 

5. Compile the file so that class files with class extension are created for each class 
definition in a package 

 
Java also supports the concept of package hierarchy.  This is done by specifying multiple 
package names separated by dots in a package statement 
 package  package name1.package name2;  
 
     This helps us to group related classes into a package and then group related packages 
into a package and then group related packages into a larger one.  The new package should 
be stored in the subdirectory with package name2, which is in turn the subdirectory of 
directory with package name1,which is in turn the subdirectory of the directory where the 
source files that will import the package are stored. 



77 

 

 
4.1.3 Accessing a user package 
 
1, Using fully qualified class name 
 
A package can be accessed by specifying the class path as  
 

Package name1.package name 2.  …….  .class name 

 

Eg;-  college.student.Print 

 

package sub package class 

 

This will access the class Print in the sub package student which in turn belongs to 
the package college. 

 

2. Using import statement (short cut approach) 

This statement can be used to search a list of packages for a particular class.   

    import  package name 1.[package name 2.       ……].class name; 

There can be more than one import statement and it should appear before the class 
definitions.After an import statement is defined, all the members can be directly accessed 
without using the package name or class name 

Eg;- 1. import  student.Result; 

 Allows us to use the class Result in the package student. 

       2.  import student.*; 

 Allows us to use all the classes defined in the package student. 

       3.  import college.student.Result; 

 Allows us to use the class Result in the sub package student in the package college. 

 

The short cut approach has the advantage that we need not use long package 
names repeatedly in our programs.  But it has the disadvantage that it is difficult to 
determine from which package a particular member came, when a large no. of  packages 
are imported. 

 

 



78 

 

4.1.4 Using a package 

package college; 
public class Student 
     { 
 int  rollno; 
 String name; 
 public Student (int r, string n) 
    { 
  rollno = r; 
  name = n; 
    } 
 public void print ( ) 
   { 
  System.out.printn (“Roll No :” + roll no); 
  System.out.println (“Name:” + name); 
   } 
     } 
 Store the file in the subdirectory college with the name Student.java. Compile the file 
and store the class files in the same directory. 

package course; 
public class Diploma 
    { 
 String discipline; 
 String year; 
public Diploma(String d,String y) 
       { 
  discipline = d; 
  year = y; 
       } 
            public  void print ( ) 
       { 
  System.out.println (“course:” + discipline): 
  System.out.println (“year:” + year):  
      } 
      } 
 Store the file in the subdirectory course with the name Diploma.java. Compile the file 
and store the class file in the same directory. 
import college.*; 
import course.*; 
class Stuinfo 
      { 
 public  static void main (String args[]) 
     { 
  Student s1 = new Student (“98630”, “kumar”); 
  Diploma d1 = new Diploma (“Computer”, “III”); 
  s1.print( ); 
  d1.print( ); 
    } 
     } 
 
 
 



79 

 

Output 
 
Roll No : 98630 
Name    : Kumar 
Course   : Computer 
Year   : III 
 
4.1.5 Adding a class to a package 
 

1. Place the package statement before class definitions 
2. Define the class with public modifier  

package package name ; 
public  class  class name 
 { 
………. 
 }       

3. Save the source file with class name.java extension inside the directory with 
given package name. 

4. Compile the source file to create the class file which should also reside in the 
directory with given package name.  

 
 Any  no.  of classes can be added to the same package 
 
      class class name 
  { 
   ….. 
  } 
 
 To create a package with multiple public classes, create them as separate source 
files with the package statement at the top of each file and compile them individually to 
produce the class files. 
 
4.1.6 Hiding classes 
 Whenever a package is imported using * option, only public classes are imported. 
Other classes which are not declared as public are hidden from access from outside the 
package. 
 
Eg;-     package pl; 
 public  class xxx 
   { 
         ……. 
   } 
 class yyy 
   { 
            …. 
    } 
 Consider the section of code in the main program 
 import pl.*; 
 xxx objx; 
 yyy objy;  
 
 produces an error since yyy is a nonpublic class.  It cannot be imported.  It is hidden.  
So we can’t create object for it. 



80 

 

4.2 Applets 
 
4.2.1 Introduction 
 
 Applets are small Java programs that are primarily used in Internet computing.  They 
can be transported over the Internet from one computer to another System.  It can be run 
using the Applet viewer or any web browser that supports Java. An applet can perform 
arithmetic operations, display graphics, play sounds, accept user input, create animation and 
play interactive games.  A web page can now contain not only a simple text or a static image 
but also a Java applet which when run, can produce graphics, sounds and moving images 
 
4.2.1.1  Local and remote applets 
 

1. Local applet 
 
 They are developed locally and stored in a local System.  Internet connection is not 
required.  When a web page is trying to find a local applet, it simply searches the directories 
in the local System and locates and loads the specified applet. 
   

  

2. Remote applets 

 A remote applet is the one developed by the remote user and stored on a remote 

computer connected to the Internet.  A  remote applet can be downloaded on to our System 

through the Internet and executed. 

 To locate and load a remote applet, the applets address should be known.  This 

address is known as Uniform Resource Locator (URL) and must be specified in the applets 

HTML document as the value of the CODEBASE attribute. 

Eg;- 

 CODEBASE = http: // www.netserve.com/applets 

 If the applet is local, CODEBASE may be absent or may specify a local directory. 

4.2.1.2 Differences between applets and application programs 

 Applets are not full featured application programs.  They are usually written to 
accomplish a small task or a component of a task.  They are usually designed for use on the 
Internet. 

http://www.netserve.com/applets


81 

 

1. Applets do not have main() method for initiating execution of the code.  Applets when 
loaded automatically call certain methods of applet class to start and execute the 
applet code. 

2. Applets cannot run independently. They are run from inside a web page using a 
special feature known as HTML tag. 

3. Applets cannot read from or write to the files in the local computer. 
4. Applets cannot communicate with other servers on the network. 
5. Applets cannot run any program from the local computer. 
6. Applets are restricted from using libraries from other languages such as C or C++. 
7. Applets are event driven whereas the applications are control driven. 

 

4.2.2 Applet life cycle 
 Whenever an applet is loaded, it undergoes a series of changes in its state.  The 
applet states include 
 1.Born or initialization state 
 2. Running state 
 3. Idle or stopped state 
 4. Dead or destroyed state 
 

 

 

 

 

 

 

 

 

 

 

1. Initialization state 
 Whenever an applet is loaded, it enters into initialization state.  This is achieved by 
called the init() method of the Applet class.  The initialization occurs only once in the applets 
life cycle and it results in the birth of the applet.  At this stage, we can 

a. create objects needed by the applet 
b. setup initial values 
c. load images or fonts 
d. setup colors 

 The init() method should be overridden in our program to achieve the same. 
  public void init ( ) 
                             { 
   …… 
  } 



82 

 

2. Running state  
 When the start() method of the Applet Class is called, an applet enters into the 
running state.  This occurs automatically after the applet is initialized.  An applet can also be 
restarted from idle or stopped state. The start() method can be overridden to create a thread 
to control the applet 
 public void start ( )  
                        { 
   ….. 
  } 
3. Display State  

 An applet can enter display state at any time form the running state. At this state, it  
perform some output operation on the screen by calling  the paint ( ) method.  Hence, the 
paint ( ) method should be overridden to display information. 
 public void paint (Graphics g)    
    { 
       ….. 
     } 
4. Idle or stopped state 

 An applet is stopped from running when stop() method is called and it becomes idle.  
Stopping occurs automatically when we leave the page containing the currently running 
applet.   
 public void stop() 
  { 
   …… 
  } 
5. Dead state 

 When an applet is removed from memory, it enters into the dead state.  When we 
quit the browser, an applet automatically becomes dead by invoking the destroy() method.  
Dead state occurs only once in the applets life cycle.  If the applet has created any 
resources like threads, they should be cleaned up by overriding the code. 
 public void destroy() 
       { 
  ….. 
        } 
4.2.3.1 Creating an applet 
 The applet code uses the services of two classes namely Applet and Graphics from 
the Java class library.  The Applet Class is contained in the java.applet package and  
provides life and behavior to the applet through its methods. The Applet class therefore 
maintains the life cycle of an applet.   
 
Methods 

1. init( ) 
 It is used to initialize the variables. This is the first method called  and is 
called only once during the runtime.   

  void init ( ) 
2. start ( ) 

 This method is called by the browser after the init() method is called.  It is also 
used to restart an applet after it has been stopped.   

  void start ( ) 
 

3. stop( )  
 This method is used to suspend the execution of the applet.  The execution can be 
restarted at any time using start() method.   



83 

 

  void stop( ) 
4. destroy ( ) 

 This method removes the applet completely from the memory.  Before using this 
method, the applet should be stopped with the stop ( ) method. 
 void destroy( ) 

5. paint ( ) 
 This method is used to display the result of the applet code on the screen.  The 
output may contain text, graphics or sound.  This method can be called any no. of times and 
it requires an instance of a Graphics class as its argument.    
 public void paint (Graphics g) 
 Hence, the graphics class contained in the java.awt package should be imported.  
The graphics class contains a method drawString( ) to display the graphical applet o/p.    
 g.drawString(string, x, y) 
where string denotes any given string and x and y denote the starting location of the screen 
(in pixels) where the output is drawn. 
Eg;- 
 g.drawString (“Welcome”, 10,100); 
 
Output 
 

 

 

 

The general form for creating an applet code is  
import java.awt.*; 
import java.applet.*; 
…….. 
public  class appletclassname  extends  Applet 
 { 
  public  void paint (Graphics g) 
        { 
   ……. 
               } 
                } 
  The appletclassname is the main class for the applet.  When the applet is 
loaded, Java creates an instance of this class and then calls a series of Applet class 
methods to execute the code.  The main Applet class should be declared as public and the 
applet code should be saved with the file name of the class declared as public followed by 
.java extension. 
Eg;- 
import java.awt.*; 
import java.applet.*; 
public class HelloJava extends Applet 
      { 
 public void paint (graphics g) 
     { 
  g.drawString (“Hello! Welcome”, 10,100); 
     } 
     } 

    100 

10 

   welcome 



84 

 

            The Applet class contained in the java.applet package itself is a subclass of the 
panel class in java.awt package which is again a subclass of the container class, a subclass 
of the component class, a subclass of the object class in the java.lang package.  Hence, the 
main Applet class inherits all the above classes i.e we can use the variables and methods 
from all the above classes. 
 

 

   

 

 

 

 

 

 

 

 

4.2.3.2 Executing an  applet 

 Executable applet is nothing but the class file of the applet which is obtained by 
compiling the source code using the command 

  javac filename.java 

 The output will have the name filename.class and is stored in the same directory 
where the .java file is stored.  During compilation, it any errors occur, then they should be 
corrected and the source file is to be recompiled. 

 

Note: Make sure that the applet source code file with extension .java, executable applet file 
with extension .class and HTML file with extension .HTML are stored in the current directory.  

 

 An applet can be run either using 
a) Web browser supporting Java (Any Java enabled web browser) 
b) Java appletviewer. 

 If  web browser is used, the entire web page containing the applet will be displayed.  
If an appletviewer is used, then only the o/p of the applet is displayed.  
 To run using applet viewer, type at the dos prompt 
  appletviewer  HTML filename 
Eg;- 
 appletviewer HelloJava.HTML 
 

java.lang.object 

java.awt.component 

java.awt.container 

java.awt.panel 

java.applet.Applet 



85 

 

Output 

 

 

 

 

To run using web browser, start the browser, give the file name as 

 C:\directory\HTML file 

Eg;- C:\Java\ HelloJava.HTML 

Output 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4 APPLET tag  

 The APPLET  tag is contained in the body section and starts with <APPLET> and 
ends with </APPLET>.  It contains the name of the applet to be loaded.  It tells the browser 
about the space requirements of the applet.   
 <APPLET  
  CODE = Name of the applet 
  WIDTH = Applet width    
  HEIGHT = Applet height> 
 </APPLET> 
EG;- <APPLET 
  CODE = HelloJava.class 
  WIDTH = 400 

           appletviewer:Hello.java 

Applet 

         Hello java 

 

Applet loader started  

  

 

 

 

  

 Hello Java 

 

 

 

 Applet HelloJava  

started 



86 

 

  HEIGHT = 200> 
 <APPLET> 
 The above section of code tells the browser to load the applet HelloJava.class and 
display it in an area with 400 pixels width and 200 pixels height. 
 

4.2.4.1 Adding Applet to the HTML file  

 The <APPLET> tag is inserted in the HTML page at the place where the output must 
appear. 
Eg:- 
<HTML> 
 <! Display a welcome title and message> 
 <HEAD> 
  <TITLE> 
   welcome to JAVA Applets 
  </TITLE> 
 </HEAD> 
 <BODY> 
           <CENTRE> 
   <H1> 
    welcome to the world of applets 
   <H1> 
           </CENTRE> 
  <BR> 
  <CENTER> 
   <APPLET 
    CODE = HelloJava.class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
    WIDTH = 400 
    HEIGHT = 200> 
   </APPLET> 
                  </CENTER> 
          </BODY>  
</HTML> 

 The file is stored with the name HelloJava.HTML in the directory where the 

executable applet is stored. 

4.2.4.2 More about Applet tag 
Syntax  
<APPLET 
 [CODEBASE = code base-VRL] 
 CODE = applet file name.class 
 [ALT = alternate text] 
 [NAME = applet instance name] 
 WIDTH = No. of  pixels 
 HEIGHT =No. of pixels 
 [ALIGN = alignment] 
 [VSPACE = no. of pixels] 
 [HSPACE = no. of pixels] 
> 
[<PARAM NAME = NAME 1  VALUE = value 1 >] 
[<PARAM NAME = NAME 2  VALUE = value 2 >] 
………. 



87 

 

[Text to be displayed in the absence of Java] 
</APPLET> 
List of attributes 

1. CODE  It specifies the name of the applet class to be loaded. 
 

2. CODE BASE 
 It specifies the directory in which the applet resides.  If the applet resides in the same 
directory as the HTML file, the CODEBASE need not be present.  If the applet is local and 
resides in different directory, then the CODEBASE should contain the path of the directory 
where the executable applet resides.  If the applet is remote and resides in a distant 
computer, the CODEBASE contains the URL of the directory where the executable applet 
resides. 

3. WIDTH 
      It specifies the width of the applet in no. of pixels. 

4. HEIGHT 
      It specifies the height of the applet in no. of pixels. 

5. NAME 
 It specifies a name for the applet so that the other applet on the page can refer to this 
applet for inter applet communication. 
6.    ALIGN 
 Specifies the location on the HTML page where the applet will appear.  We can align 
them at TOP, BOTTOM, LEFT, RIGHT, MIDDLE, ABSMIDDLE, ABSBOTTOM, TEXTTOP 
and BASELINE. 

6. HSPACE 
 
 Specifies the amount of horizontal blank space in no. of pixels, the browser should 
leave surrounding the apple t(Used only when ALIGN is set to  LEFT OR RIGHT). 

7. VSPACE 
 Specifies the amount of vertical blank space in no of pixels, the browser should leave 
surrounding the applet (Used only when ALIGN is set to TOP or BOTTOM). 

8. ALT 
 Specifies the text to be displayed in non Java. The attributes CODE, WIDTH and 
HEIGHT must compulsorily be present in an applet.  Others are optional. 
4.2.5 Passing parameters to applets 
 <PARAM ……> tags can be used to pass user defined parameters to an applet. 
Each <PARAM …..> tag has a name attribute and a value attribute.  Inside the applet code, 
the applet can refer to that parameter by name to find its value. 
Eg;- 
<PARAM NAME = text  VALUE = “ I LOVE INDIA”> 
 Changes the text to be displayed 
<PARAM NAME = color VALUE = “red”> 
 Changes the color of the text to be displayed as red. 
 To setup and handle parameters 

1. Include appropriate <PARAM ….> tags in the HTML document. 
2. Provide code in the applet to parse these parameters 

 When an applet is loaded, parameters are passed to it.  The init( ) method can be 
defined to get hold of the parameters in the <PARAM> tags using getParameter( ) method.  
The method takes one string argument representing the name and returns a string 
containing the value of that parameter. 
Eg;- 
import java.awt.*; 
import java. applet.*; 
public class HelloJavaParam extends Applet 



88 

 

     { 
 String str; 
 public void init ( ) 
       { 
  str = getParameter (“String”); 
  if (str = = NULL) 
   str = “JAVA”; 
  str = “Hello” + Str; 
       } 
 public void paint (Graphics g) 
      { 
  g.drawString (str,50,50); 
      } 
     } 
 
<HTML> 
 <HEAD> 
  <TITLE> 
   welcome to Java applets 
  </TITLE> 
 </HEAD>  
 <BODY> 
  <APPLET 
   CODE = HelloJavaParam.class 
   WIDTH = 400 
   HEIGH T = 200 
  > 
  <PARAM NAME = “ String” VALUE = “APPLET !” > 
  </APPLET> 
 </BODY> 
</HTML> 
 
Output 
 Hello APPLET ! 
 
 If the <PARAM ….> tag is omitted, then  
 
Output 
 Hello Java 
4.2.6 Graphics class 
 The class has methods for drawing many different types of shapes, from simple lines 
to polygons to text in a variety of fonts.  These methods have arguments representing end 
points, corners or starting locations of a shape as values in the applets coordinate System. 
 
4.2.6.1 Lines and Rectangles 
 The simplest shape is a line. The drawLine() method takes two coordinate pairs 
(x1,y1) and (x2,y2) as arguments and draws a line between them. 
 
 Eg;- g.drawLline(10,10,50,50); 
 Draws a line from (10,10) to (50,50) 
   (10,10) 
  

(50,50) 



89 

 

 G is the Graphics object passed to paint() method. 
 The drawRect ( ) method is used to draw a rectangle.  It takes 4 arguments.  The first 
two represent the x&y coordinates of the top left corner of the rectangle and the remaining 
two the width and height of the rectangle. 
 
 Eg;- g.drawRect(10,60,40,30); 
              40 

   (10,60) 

           30 

         

 Draws a rectangle starting at (10, 60) having a width of 40 pixels and a height of 30 

pixels.  

 The fillRect( ) method is used to draw a filled rectangle.  It also takes 4 arguments as 

drawRect( ). 

  g.fillRect(60,10,30,80); 

  (60,10)            30 

 

      80 

 

  

 The drawRoundRect( ) method draws a rounded rectangle.  It takes 6 arguments.  

The first four are similar to that of the drawRect( ) method.  The other two represent the 

width & height of the corner angles. 

 g.drawRoundRect(10,100,80,50,10,10): 

             80 

 

                              50 

  

 The fillRoundRect( ) method draws a filled rounded rectangle.  The arguments are 

same as that for drawRoundedRect( ). 

 g.fillRoundRect(20,110,60,30,5,5); 

                                           60 

 



90 

 

                           30 

import java.awt.*; 
import java.applet.*; 
public class LineRect extends Applet 
     { 
 public void paint (Graphics g) 
                   { 
  g.drawRect(10,100,80,50); 
  g.fillRoundRect (20,110,60,30,5,5); 
  g.drawLine(10,100,90,150); 
  g.drawLine(10,150,90,100); 
        } 
       } 
 
HTML file 
 
<APPLET 
 CODE = LineRect. Class 
 WIDTH = 250 
 HEIGHT = 200> 
</APPLET> 
 

 

4.2.6.2 Circles and ellipses  

 The drawOval() method can be used to draw a circle or an ellipse.  It takes four 

arguments.  The first two represent the top left corner of the imaginary rectangle and the 

other two represent the width and height of the oval.    

 If the width and height are equal, the oval becomes a circle. 

Eg;- g.drawOval(10,10,120,60); 

 

 The fillOval( ) method draws a solid Oval  

Eg;- g.fillOval(10,10,50,50); 



91 

 

  

Eg;- 
public void paint (Graphics g) 
      { 
 g.drawOval(20,20,200,120); 
 g.setColor(color.green ); 
 g.fillOval(70,30,100,100); 
      } 
  

   

4.2.6.3 Drawing arcs 

 The drawArc() method is used to draw arcs.  It takes six arguments.  The first four 

are same as that of the drawOval( ) method and the last two represent the starting angle of 

the arc and the no. of degrees around the arc(sweep angle). 

Eg:- g.drawArc(10,10,100,50,90,180) 

 

    

 

  50 

 

   

    100 

 If the sweep argument is negative, then the arc is drawn in backward direction. 

Eg;- g.drawArc(10,10,100,50,45, -135) 

180 



92 

 

 

 

 

                         50 

 

         100 

 The fillArc( ) method is used to draw a filled arc. Filled arcs are drawn as if they were 
sections of a pie.  Instead of joining the two end points, they are joined to the centre of the 
oval. 
import java.awt.*; 
import java.applet.*; 
public class Face extends Applet 
     { 
 public void paint (Graphics g) 
        { 
  g.drawOval (40,40,120,150); // Head 
  g.drawOval (57,75,30,20); // Left eye 
  g.drawOval (110,75,30,20);//Right eye 
  g.fillOval (68,81,10,10); // Left pupil 
  g.fillOval (121,81,10,10); // right pupil 
  g.drawOval (85,100,30,30); // nose 
  g.fillArc (60,12,80,40,180,180); //Mouth 
  g.drawOval (25,92,15,30);//left ear 
  g.drawOval (160,92,15,30) // right ear 
        } 
      } 
 

 

 

 

 
 
 
4.2.6.4 Drawing polygons 

 Polygons are shapes with 
many sides.  A polygon may be considered as a set 
of lines connected together. We can draw a polygon with n sides using the drawLine() 
method n times in succession. 
Eg;- public void  paint (Graphics g) 
        { 
  g.drawLine (10,20,170,40); 
  g.drawLine (170,40,80,140); 
  g.drawLine (80,140,10,20); 
        } 

 



93 

 

   10,20 

                                                                                 

                                                                                              

 

We can also draw using the drawPolygon( ) method.  It contains 3 arguments.  The first one 
is an array of integers having x coordinates.  The second one is an array of integers having y  
coordinates and the third one is an integer for the total no.of points.  Repeat the first point at 
the end for closing the polygon.  The arrays x and y should be of same size. 
 

public void paint (Graphics g) 
     { 
 int x points [ ] = {10,170,80,10}; 
 int y points [ ] = {20,40,140,20); 
 int n points = x points. Length; 
 g.drawPolygon(x points, y points, n points); 
    } 
  

 A filled polygon can be drawn by calling the fillPolygon() method.  

  

import java.awt.*; 
import java.applet.*; 
public class Poly extends Applet 
      { 
 int x1[ ] = {20,120,220,20); 
 int y1[ ] = {20,120,20,20}; 
 int n1 = 4; 
 int x2[ ] = {120,220,220,120}; 
 int y2 [] = {120,20,220,120}; 
 int n2 = 4; 
 public void paint (Graphics g) 
       { 
  g. draw Polygon (x1, y1,n1); 
  g. fill Polygon (x2, y2, n2) 
        } 
       } 
We can also treat the polygon as an object  



94 

 

1. Define the x coordinate values as an array 
2. Define the y coordinate values as an array 
3. Define the no. of points n 
4. Create a polygon object and initialize it with above values. 
5. Call the drawPolygon() or fillPolygon() method with the polygon object as 

argument. 
public void paint (Graphics g) 
       { 
 int x[ ] = {20,120,220,20}; 
 int y[ ] = {20,120,20,20}; 
 int n =x.length; 
 Polygon poly = new Polygon (x,y,n); 
 g.drawPolygon(poly); 
      } 
 Now we can easily add points to the polygon using addPoint( ) using  
 Object.addPoint(x,y); 
public void paint (Graphics g) 
      { 
 Polygon poly = new Polygon ( ); // creates empty polygon 
 poly.addPoint(20,20); 
 poly.addPoint(120,120); 
 poly.addPoint (220,20); 
 poly.addPoint(20,20); 
 g.drawPolygon (poly); 
    } 
4.2.6.5 Drawing LineGraphs 

A line graph is useful for displaying data or information that changes continuously 

over time. Another name for a line graph is a line chart. A line chart or line graph is a type 

of chart which displays information as a series of data points called 'markers' connected by 

straight line segments. 

Applet to display Line Chart 

import java.awt.*; 
import java.applet.*; 
public class Linechart extends Applet 
{ 
     public void paint(Graphics g) 
 { 
 int x1[ ] = {20,120,200,225,250}; 
 int y1[ ] = {20,120,20,150,25}; 
 int n =x1.length; 
  g.drawString("Y", 10, 20); 
 g.drawString("X",300,200); 
 g.drawLine(10,10,10,200); 
 g.drawLine(300,200,10,200); 
 for(int i=0;i<n;i++) 
 g.drawLine(x1[i],y1[i],x1[i+1],y1[i+1]);  
 } 
} 
HTML file 
<HTML>  



95 

 

   <APPLET 
    CODE = Linechart.class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
    WIDTH = 400 
    HEIGHT = 200> 
   </APPLET> 
                  
</HTML> 
Output 

 

 

4.2.6.6 Drawing Barchart 

 Applets can be designed to display bar charts, which are commonly used in 

comparative analysis of data. 

Year 1991 1992 1993 1994 

Turn Over 

Rs.crores 

110 150 100 170 

  

These data are input using the method getParameter(). The method getParameter() 

returns only string values and therefore the wrapper class method parseInt() is used to 

convert strings to the integer values. 

Applet for drawing Bar Chart 

import java.qwt.*; 
import java.applet.*; 
public class Barchart extends Applet 
{ 
 int n =0; 
 String label[]; 
 int  value[]; 
 public void init() 
 { 
  n= Integer.parseInt(getParameter(“columns”)); 
  label = new String[n]; 



96 

 

  value = new int[n]; 
  label[0] = getParameter(“label1”); 
  label[1] = getParameter(“label2”); 
  label[2] = getParameter(“label3 ”); 
  label[3] = getParameter(“label4”); 
  value[0] = Integer.parseInt(getParameter(“c1”)); 
  value[1] = Integer.parseInt(getParameter(“c2”)); 
  value[2] = Integer.parseInt(getParameter(“c3”)); 
  value[3] = Integer.parseInt(getParameter(“c4”)); 
 } 
 public void paint(Graphics g) 
 { 
  for(int I =0;i<n;i++) 
  { 
   g.Setcolor(color.red); 
   g,drawstring(label[i],20,i*50+30); 
   g.fillrect(50,i*50+10,value[i],40); 
  } 
 } 
} 
 

 

HTML file 

 
<HTML> 
<APPLET  CODE = Barchart.class 
  WIDTH = 300 
  HEIGHT = 250 > 
<PARAM  NAME = “columns”  VALUE=”4”> 
<PARAM  NAME = “c1”  VALUE=”110”> 
<PARAM  NAME = “c2”  VALUE=”150”> 
<PARAM  NAME = “c3”  VALUE=”100”> 
<PARAM  NAME = “c4”  VALUE=”170”> 
<PARAM  NAME = “label1”  VALUE=”91”> 
<PARAM  NAME = “label2”  VALUE=”92”> 
<PARAM   NAME = “label3”  VALUE=”93”> 
<PARAM  NAME = “label4”  VALUE=”94”> 
</HTML> 
 
4.3 AWT Components and Event Handlers 

4.3.1 Abstract Window Tool Kit   

 The Abstract Window Tool Kit (AWT) supports Graphical User Interface (GUI) 

programming. The AWT package contains set of classes for windows, buttons, labels, 

menus etc. 

4.3.2 Events  



97 

 

 Java is an event driven language. An event is an action triggered by the user such as 

a key press or mouse click. Java is an OOP language, so each event is considered as an 

object of class. Java provides a class called EventObject. The java.awt package contains a 

class called AWT event which is a subclass of EventObject. 

The package java.awt contains several event classes. 

Event classes 

 1. KeyEvent – Generated when a key is pressed. 
 2. MouseEvent – Generated when mouse is operated. 
 3. WindowEvent – Generated when window is opened, closed etc. 
 4. ActionEvent. 
 5. AdjustmentEvent. 
 6. ComponentEvent. 
 7. FocusEvent. 
 8. InputEvent. 
 9. ItemEvent. 
 10. Text Event. 
 

4.3.2.1 Event Generators  

 An event is generated by an event source. 

 

Example  

 When a button is pressed, the ActionEvent is generated. Hence button is an event 
source. 
-----------------------------------------------------------------------------------------------------------------  
Event      Generated By 
----------------------------------------------------------------------------------------------------------------- 
Action Event    Button pressing 
     Double clicking of a item in a list 
     Selecting a menu item. 
Item Event    Selection or deselection of a checkbox  
      Change of choice item selection 
     Selection or deselection of checkable menu item. 
Adjustment Event   Manipulation of scrollbar. 
Text Event    Enter a character in Text Field or Text Area. 
Window Event              Open, close, iconify, deiconify, activate and   
      deactivate windows. 
----------------------------------------------------------------------------------------------------------------- 
4.3.2.2 Event Listener  
 
 The objects response to an event is called Event Listener. 

Event Generator  Event Listener 

Creates an event Responds for the Event 

    



98 

 

Event Listeners  

o ActionListener. 

o AdjustmentListener. 

o ComponentListener. 

o ContainerListener. 

o FocusListener. 

o ItemListener. 

o KeyListener. 

o MouseListener. 

o MouseMotionListener. 

o WindowListener. 

 

 

4.3.2.3 Event handling    

 The programmer developing an applet or application will write event handlers. The 

programmer will also need to register the handler with the appropriate event generator. 

 

object                              event handler                             event generator 

 

           register(handler)                                                                  remember  

                                                                                                        who 

                                                                                                        registered 

 

                                                                                                           event  

                                                                                                              occurs 

 

                                                    Inform carry out task 

 



99 

 

  Buttons generate Action Events. An event handler is technically called a 
listener in Java. A listener is registered with a button, by some object sending it the 
addActionListener method, with a parameter indicating who the listener ( handler ) is going 
to be. The button remembers who is registered. This is done automatically by code in the 
Java libraries.   

When the event occurs, the button informs the listeners   that the event occurred by 

sending the action performed message to each of the listeners. This is also done 

automatically by Java library code. 

object                              listener                                           mybutton 

 

           register(handler)                                                                  remember  

                                                                                                        who 
                                                                                                        registered                                                                                   
                                                                                                         event  
                                                                                                              occurs 

 
 
                                                                                                   

mybutton  pressed  action performed 
 

                                                    Inform carry out task 
4.3.3.1 Labels 
 
The label component is the simplest of Java’s AWT and consists of a text string for display 
only. 
 
Syntax  
  Label labelname = new label ( “ Text message “ ); 
 
Example  
   Label L1 = new label ( “Comp Engg “ ); 
  The above example creates a label with name L1 and displays the message 
Comp Engg. 
 
Methods   
 

Method Name Purpose Example 

setText ( ) To change the text of a label L1.setText ( “ Mech . Engg” ); 

getText ( ) To get the text in the label to a 

string variable 

String S1 = L.getText ( ); 

setAlignment ( ) To change the alignment of the 

label 

L1.setAlignment ( label . LEFT ) 

Like this we can align Left, Right , Center 



100 

 

getAlignment ( ) To get the alignment of the 

label. 

int x = L1.getAlignment ( ); 

Example  
 
import java . awt . * ; 
import java . applet . * ; 
public class Labeldemo extends Applet 
     { 
              public void init ( ) 
                   { 
                                Label one = new Label ( “One” ); 
                                Label two = new Label ( “Two” ); 
                                Label three = new Label ( “Three” ); 
 
                               add ( one ); 
                               add ( two ); 
                               add ( three ); 
                   } 
     } 
  add ( one ) of method is used to add the label one to the applet.. 
 
HTML file  
 
< HTML > 
< BODY > 
< APPLET  
    CODE = Labe demo . class 
    WIDTH = 400 
    HEIGHT = 400 > 
< / APPLET > 
< / BODY > 
< / HTML > 
 

Output 

  

 

 

 

 

4.3.3.2 Text -Component  

The TextField and TextArea classes implement one dimensional and two 

dimensional components for text input display and editing. Both classes extend from the 

TextComponent class. 

 

 

 

Applet 

 

                    One   Two     Three 

Applet Viewer : Label demo 

Component 



101 

 

 

 

 

 

 

 

 

4.3.3.2.1 TextField 
It is used for Single line text entry. It is also called as edit control.  
Constructors 

1. TextField ( )  Constructs an empty text field. 

2. TextField ( int cols )   Constructs an empty text field with specified number 
of columns.  

3. TextField ( String text )   Constructs a textfield whose initial  content is 
text. 

4. TextField ( String text , int cols )   Constructs a textfield whose  initial 
content is text with the  specified number of columns. 

 
Methods 
 

 getSelectedText ( )     Returns the currently selected text. 

 getText ( )            Returns the text content of the component. 

 setText ( )            Sets the text content of the component. 
 
Example  
 
TextField tf1 = new TextField ( “ Java” ); - It creates a text field with the content Java. 
 

 add( tf1 )  Add the textfield to the applet. 
 
4.3.3.2.2 TextArea  
 
   This is used for Multiline text entry.  
Constructors 
 

1. TextArea( )      Constructs an empty text area. 

2. TextArea ( int rows , int cols )  Constructs an empty text area with the 
specified  no. of rows and  columns. 

3. TextArea ( String text )   Constructs a text area whose initial content 
is    text. 

4. TextArea ( String text , int rows, int cols )  Constructs a text area whose 
initial content is   text with the specified   number of rows and  columns 

 
Methods 
 

 getSelectedText ( )     Return the currently selected text. 

TextComponent 

TextField TextArea 



102 

 

 getText ( )            Returns the text content of the component. 

 SetText ( )            Sets the text content of the component. 
 
Example  
 
 TextArea ta = new TextArea ( 4, 3 ); 
  Creates a text area with 4 rows and 3 coloumns. 

 add ( ta )  Add the textArea to the applet. 
 
4.3.3.3 Buttons  
 
 A push button is a component that contains a label and generates an event when it is 
pressed.  
 
Constructors 
 

 Button ( )  Creates a empty button. 

            Button ( String Str )  Creates a button that contains Str as a label. 
 
Syntax  
 
   Button b1 = new Button ( “Text” ) ; 
 
Example 
 
 Button b1 = new Button ( “cancel” ); 
 This creates a button with label “cancel” . 
 
 
 
Methods  
 

1. add ( )  To add a button to the applet. 

2. setLocation (int x , int y )  ( x, y ) denotes the co-ordinates of 
the top left corner of the  

                                                         button. 

3. setsize ( int w, int h )  ( w, h ) denotes the width and height of  
the button. 

4. setBounds ( int x, int y, int w, int h )   ( x, y )  coordinates of 
the top left   corner. 

           ( w, h )  width and height of button 
in pixels. 
 
Example  
 
 import java . applet . * ; 
  import java . awt . * ; 
 public class buttondemo extends Applet 
 { 
    public void init ( ) 
    {  
       Button b1 = new Button ( “Mech”  ); 
      Button b2 = new Button ( “Comp” ); 



103 

 

      add ( b1 ); 
      add ( b2 ); 
    } 
    } 
 
4.3.3.4 Check boxes  
 
  A checkbox is a control that is used to turn an option on or off. It consists of a 
small box that can either contain a checkmark or not. There is a label associated with each 
checkbox. The checkbox has two states, true ( checked ) and false ( not checked ). The 
check boxes can be used individually or as part of a group.  
 
Constructors  
 

o Checkbox ( ) 
o Checkbox ( String S ) 
o Checkbox ( String S, boolean state ) 

If the state is not specified the default state is false. 
 
Methods  
 

1. setLabel ( )  used to assign label for the checkbox. 

2. getLabel ( )  used to get the label of the checkbox. 

3. setState ( )    used to assign state for the checkbox. 

4. getState ( )    Returns a boolean value representing the state of checkbox.  
Example  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
 import java . applet . * ; 
 import java . awt . * ; 
 public class checkbox extends Applet 
 { 
    public void init ( ) 
    { 
              Checkbox C1 = new checkbox ( “Red”); 
      Checkbox C2 = new checkbox ( “green” , true ); 
      add ( C1 ); 
         add ( C2 ); 
    } 
 }  
 
4.3.3.5 Choice  
 
 The choice class is used to create a pop-up list of items from which the user may 
choose. A choice control is a form of menu. Each item can be added  using addItem( ) 
method. 
 
Syntax  
 
  Choice C1 = new choice( ); 
 New items can be added to the menu using addItem( ) method. 
 
Example 
 



104 

 

 C1. addItem( “Item” ); 
 
Methods  
 

1. addItem ( )   Adds new items to the menu. 

2. countItem ( )    To count number of items in the choice menu. 

3. getItem ( )   To get an item of the choice menu. 

4. getSelectedItem ( )  To get the item which has been selected. 
 
Example  
 
 import java . applet . * ; 
 import java . awt . * ; 
 public class choices extends Applet 
 { 
      choice opt = new Choice ( ); 
      public void init ( ) 
                  { 
             opt.addItem ( “Red” ); 
            opt.addItem ( “Green” ); 
            opt.addItem ( “White” ); 
            opt.addItem ( “Yellow” ); 
            add ( opt ); 
       } 
  } 
 

 

 

 

 

 

 

 

4.3.3.6 Scroll bars  

 
 The scrollbar class provides a user interface to scroll through a range of integer 
values.  
 
Constructors  
 

1. Scrollbar ( )     Constructs a vertical scroll bar. 

2. Scrollbar ( int orientation )    Constructs a scrollbar with the specified   orientation.  
(Scrollbar.HORIZONTAL,  Scrollbar.VERTICAL). 

3. Scrollbar ( int orient , int value , int visible, int min, int max )  

Applet 

 

Red 

Green 

White 

Yellow 



105 

 

              Constructs a scroll bar with the specified orientation, value of the scroll 
bar, size of   the visible portion, minimum and maximum  value. 
 
Example  
 
 Scrollbar mark; 
 mark = new Scrollbar ( Scrollbar.HORIZONTAL, 42, 10, 0, 100 ); 
 
 This constructs a horizontal scrollbar with  
 value = 72 
   visible Size = 10 
   minimum value = 0 
   maximum value = 100 
 
Methods  
 

1. getValue ( )       Returns the current value in scrollbar. 

2. setValue( int v )    Sets the value v to the scrollbar. 

3. getMinimum( )      Returns the minimum value. 

4. getMaximum( )     Returns the maximum value. 

5. getVisible( )       Returns the visible size. 

6. getOrientation( )   Returns the integer value representing the orientation.  
 
4.3.3.7 MenuBar and Menuclass  
 
    A menu bar displays a list of Top-level menu choices. The menu bar has a 
horizontal bar in which the menu title and the pull down menu appears on the Screen.  
 
Classes used  

1. MenuComponent. 
2. MenuItem. 
3. MenuBar. 
4. Menu. 
5. Checkbox MenuItem. 

 
4.3.3,7.1 Menu Component Class  
 
 The Menu Component class is an abstract class from which the MenuBar and 
MenuItem classes are derived. 
 
Methods  
 

1. setFont ( Font f )   Sets the display font for the Menu Component object. 

2. getFont( )              Gets the font of the Menu Component and returns the  font 
object. 

 
4.3.3.7.2 Menu Bar Class  

 
 The MenuBar class is derived from MenuComponent Class. 
 
Syntax 
  MenuBar mb = new MenuBar( ) 
 



106 

 

 creates an empty Menu Bar. A menu object can be added using add( ) method. 
Suppose mb is a MenuBar object and rep is a MenuObject the command 
   mb.add( rep ) 
 
 
 
 4.3.3.7.3 Menu Item class  
 
 The MenuItem object have a String as argument.  
 
Syntax 
 
MenuItem mi = new MenuItem ( String S ); 
 
Methods  
 

1. getLabel( )    Returns the label string of the MenuItem. 

2. setLabel( String S )   Sets a new label for the MenuItem. 

3. isEnabled( )               Returns a Boolean value representing whether the  
MenuItem    

                                         is enabled. 

4. enable( )     Enables MenuItem. 
 
4.3.3.7.4 Menu Class  
 
Menu is a derived class of MenuItem class. This means that a Menu object can be 
considered as a MenuItem. 
 
 
Syntax  
      Menu mu = new Menu ( String S, boolean b ) 
 
 This method constructs a Menu object with label s. When the boolean value b is true 
this creates a tear-off menu. A tear-off menu is the one which is still displayed after click and 
release the mouse button. 
 
Method  
 

1. isTearOff ( )           This Boolean method returns whether the menu is a  tear-off  
                                          menu. 

2. countItems ( )                Returns the number of items in the menu. 

3. getItem( int i )       Returns the MenuItem object at the ith index of the   menu.
  

4. add ( MenuItem m )    Adds the MenuItem m to the menu. 
 
Example 
 
import java.applet.*; 
import java.awt.*; 
public class samplemenu extends Frame 
     { 
      MenuBar mainmenu; 
   Menu file; 



107 

 

   MenuItem op,ne,sa,qu; 
   Menu help; 
   MenuItem commands,about; 
   Sample menu() 
            { 
      setTitle (“Menu Demo”); 
        setLayout (new FlowLayout()); 
        mainmenu = new MenuBar(); 
        setMenuBar (mainmenu); 
 
        file = new Menu(“File”); 
        op = new MenuItem(“Open”); 
        ne = new MenuItem(“New”); 
       qu = new MenuItem(“QuIT”); 
        sa = new MenuItem(“Save”); 
        file.add(op); 
       file.add(ne); 
        file.add(sa); 
        file.add(qu); 
 
        mainmenu.add(file); 
    help = new Menu(“Help”); 
      commands = new MenuItem(“commands”); 
      about = new MenuItem(“About”); 
 
      help.add(commands); 
      help.add(about); 
      mainmenu.add(help); 
               } 
  public static void main(String args[]) 
      { 
      Frame f  = new samplemenu(); 
     f.setBounds(1,1,400,400); 
    f.setVisible(true); 
       } 
} 
 
 Output 
 

 

 

 

 

4.3.4 Layout Managers 
The LayoutManagers are used to arrange components in a particular manner. 
LayoutManager is an interface that is implemented by all the classes of layout managers.  

1. java.awt.BorderLayout 
2. java.awt.FlowLayout 
3. java.awt.GridLayout 

Menu Demo 

File Help 

open 
new 
save 
Quit 



108 

 

4. java.awt.CardLayout 
5. java.awt.GridBagLayout 
6. javax.swing.BoxLayout 
7. javax.swing.GroupLayout 
8. javax.swing.ScrollPaneLayout 
9. javax.swing.SpringLayout etc. 

 
4.3.4.1 BorderLayout 
The BorderLayout is used to arrange the components in five regions: NORTH, SOUTH, 
EAST, WEST AND CENTER. Each region   may contain one component only. 

1. public static final int NORTH 
2. public static final int SOUTH 
3. public static final int EAST 
4. public static final int WEST 
5. public static final int CENTER 

 
Constructors  
 

 BorderLayout() -  creates a border layout but with no gaps between the components. 
 JBorderLayout(int hgap, int vgap) -  creates a border layout with  horizontal and 

vertical gaps between the components. 
Example 

 

import java.awt.*;   
import javax.swing.*;   
public class Border 
         {   
JFrame f;   
Border() 
                {   
       f=new JFrame();   
       
       JButton b1=new JButton("NORTH");;   
       JButton b2=new JButton("SOUTH");;   
      JButton b3=new JButton("EAST");;   
      JButton b4=new JButton("WEST");;   
     JButton b5=new JButton("CENTER");;   



109 

 

       
       f.add(b1,BorderLayout.NORTH);   
       f.add(b2,BorderLayout.SOUTH);   
      f.add(b3,BorderLayout.EAST);   
       f.add(b4,BorderLayout.WEST);   
       f.add(b5,BorderLayout.CENTER);   
         f.setSize(300,300);   
      f.setVisible(true);   
                    }   
        } 
public static void main(String[] args) 
   {   
     new Border();   
   }   
4.3.4.2 GridLayout 
 

The GridLayout is used to arrange the components in rectangular grid.  

Constructors 

 GridLayout() -  creates a grid layout with one column per component in a row. 

 GridLayout(int rows, int columns) -  creates a grid layout with the given rows and 
columns but no gaps between the components. 

 GridLayout(int rows, int columns, int hgap, int vgap) -  creates a grid layout with the 
given rows and columns along with given horizontal and vertical gaps. 

Example 

 

import java.awt.*;   
import javax.swing.*;   
   
public class MyGridLayout 
       {   
JFrame f;   
MyGridLayout() 
      {   
       f=new JFrame();   
       
       JButton b1=new JButton("1");   
       JButton b2=new JButton("2");   



110 

 

       JButton b3=new JButton("3");   
       JButton b4=new JButton("4");   
       JButton b5=new JButton("5");   
           JButton b6=new JButton("6");   
           JButton b7=new JButton("7");   
       JButton b8=new JButton("8");   
           JButton b9=new JButton("9");   
               f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);   
       f.add(b6);f.add(b7);f.add(b8);f.add(b9);   
   
       f.setLayout(new GridLayout(3,3));   
   
       f.setSize(300,300);   
       f.setVisible(true);   
 }   
} 
 public static void main(String[] args)  
   {   
     new MyGridLayout();   
   }   
 
4.3.4.3 FlowLayout 
 

The FlowLayout is used to arrange the components in a line, one after another.It is the 
default layout of applet or panel. 

Fields 

1. public static final int LEFT 
2. public static final int RIGHT 
3. public static final int CENTER 
4. public static final int LEADING 
5. public static final int TRAILING 

Constructors  

 FlowLayout() - creates a flow layout with centered alignment and a default 5 unit 
horizontal and vertical gap. 

 FlowLayout(int align) -  creates a flow layout with the given alignment and a default 5 
unit horizontal and vertical gap. 

 FlowLayout(int align, int hgap, int vgap) -  creates a flow layout with the given 
alignment and the given horizontal and vertical gap. 

Example  



111 

 

 

import java.awt.*;   

import javax.swing.*;   

   

public class MyFlowLayout 

      {   

JFrame f;   

MyFlowLayout() 

     {   

       f=new JFrame();   

             JButton b1=new JButton("1");   

       JButton b2=new JButton("2");   

       JButton b3=new JButton("3");   

       JButton b4=new JButton("4");   

       JButton b5=new JButton("5");   

                 f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);   

             f.setLayout(new FlowLayout(FlowLayout.RIGHT));   

      f.setSize(300,300);   

    f.setVisible(true);   

}   

} 

public static void main(String[] args)  

     {   

     new MyFlowLayout();   

    }   

 

4.3.5 Input Events   
 
4.3.5.1 Key events 
 
  When an event is generated through the key board, the KeyHandler class 
responds.  We can generate three types of key events.  They are  
 

1. Pressing a key (holding a key pressed) 



112 

 

2. Releasing a pressed key 
3. Typing a key 

 
 The KeyListener interface has three methods corresponding to the above events. 
They are 
 keyPressed (keyEvent e) 
 keyReleased (keyEvent e) 
 keyTyped (keyEvent e) 
 
 All the methods take an object of keyEvent class as the parameter.  The keyEvent 
class has a method getKeyChar( ) which returns the character of the key from which the 
event is generated. 
 
Eg;-  
 if e is a KeyEvent, then 
  Char C; 
  C = e.getKeyChar ( ); 
Returns the character in C. 
 
Eg;-  
import java.awt.*; 
import java.applet.*; 
import java.awt.event.*; 
public class keyEventDemo extends Applet 
    { 
 String msg = “”; 
 public void init ( ) 
       { 
  addKeyListener (new KeyManager ( )); 
  requestFocus ( ); 
       } 
 public void paint (Graphics g) 
      { 
  font f = new Font (“Ariel”, Font Bold, 30); 
  g.setFont (f);   
  g.drawString (msg, 50, 50); 
      } 
class KeyHandler implements KeyListener 
     { 
            public void keyPressed (KeyEvent e) 
       { 
  char c = e.getKeyChar ( ); 
  switch ( ) 
     { 
   case ‘R’: 
   case ‘r’ : setBackground (new Color (255,0,0)); 
       msg = “Red”; 
       break; 
   case ‘G’: 
   case ‘g’ : setBackground (new Color (0,255,0)); 
        msg = “green”; 
                         break; 
         case ‘B’: 



113 

 

         case ‘b’: setBackground (new Color (0,0,255)); 
     msg = “blue” 
      break; 
      } 
  repaint ( ); 
    } 
  
 public void keyReleased (KeyEvent e) 
    { 
     } 
 public void keyTyped (KeyEvent e) 
    { 
    } 
      } 
 } 
 

4.3.5.2 Mouse Events 
 
 The MouseEvent class is used to handle the events generated by the mouse.  There 
are two types of mouse events.  They are 
 

1. Events associated with the click of button or position of mouse pointer. 
2. Events associated with the motion of mouse. 

 
Mouse click 
 The events associated with click of button or position of mouse pointer are listed 
below. 
 

 mousePressed ( ) 

 mouseReleased ( ) 

 mouseClicked ( ) 

 mouseEntered ( ) 

 mouseExited ( ) 
 
 All the events use the MouseEvent object as parameter.  The methods must 
implement the MouseListener Interface. 
 
Mouse Motion 
 
 There are two events associated with the movement of mouse.  They are  
 

 mouseMoved ( ) 

 mouseDragged ( ) 
 
 These methods must implement the MouseMotionListener interface 
 
import java. awt. *; 
import java. applet.*; 
import java. awt. event. *; 
public class MouseDemo Extends Applet  
       { 
 String msg = ” “; 
 public void init ( ) 



114 

 

      { 
  add MouseListener (new MouseManager ( )); 
  add MouseMotionListener(new MouseMotioner ( )); 
       } 
 public void paint  (Graphics g) 
      { 
  Font f1 = new Font (“Ariel”, Font.BOLD, 20); 
  g.setFont (f1); 
  g.drawString (msg, 100, 50); 
      } 
Class MouseManager implements Mouse Listener 
   { 
 public void mousePressed (MouseEvent e) 
       { 
  msg = “Mouse Pressed”; 
  repaint ( ); 
      } 
 public void mouseReleased (MouseEvent e) 
       { 
  msg = “Mouse Released”; 
  repaint ( ); 
       } 
 public void mouseClicked (MouseEvent e) 
       { 
  msg = “Mouse clicked”, 
  repaint ( ); 
                  } 
 public void mouseEntered (MouseEvent e) 
      { 
  msg = “Mouse Entered”; 
  repaint ( ); 
                 } 
 public void mouseExited (MouseEvent e) 
      { 
  msg = “Mouse Exited”; 
  repaint ( ); 
     } 
     } 
class MouseMotioner implements MouseMotionListener 
      { 
 public void MouseMoved (MouseEvent e) 
 { 
  msg = “Mouse Moved”; 
  repaint( ); 
 } 
 public  void MouseDragged (MouseEvent e) 
 { 
  msg = “Mouse Dragged”; 
  repaint  ); 
 } 
       } 
} 
 



115 

 

Review Questions 
 

Part A (2 marks) 
 

1. What are packages? What are its types? 
2. What are applets? 
3. How will you draw  a polygon? 
4. What is an event? 
5. List the methods of Label class. 
6. What are event generators? 
7. What are layout managers? 

 
Part B (3 marks) 

 
1. List the different system packages? 
2. What are the types of applets? 
3. List differences between applets and application programs?  
4. How will you pass parameters to applets? 
5. How will you draw lines and rectangles? 
6. What are the types of events? 
7. What are the different mouse events? 

 
Part C (5 marks) 

 
8. How will you create a package? 
9. Explain the life cycle of an applet with example. 
10. List the various Applet class methods. 
11. Give the syntax of the Applet tag. 
12. Explain any three methods of Graphics class with example. 
13. How will you draw a bar chart? 
14. Explain how will you create a menu with example. 
15. Explain any one Layout Manager  with example. 
16. Explain key events with example? 

  



116 

 

UNIT V - EXCEPTION HANDLING,MULTITHREADS AND I/O STREAMS 
OBJECTIVES 

 To know different types of errors. 

 To understand the reasons & advantages of exception 

 To understand how to handle exception 

 To know what is multithreading 

 To know the  lifecycle of a thread 

 To know the different thread methods 

 To know how to define and run a thread 

 To understand what is thread priority, thread synchronization and thread scheduling 

 To know what is a file  

 To know what is stream and its types 

 To know the different stream classes  

 To understand the methods used in file operations 
 
5.1 Exception Handling  
Exception 

An exception is a problem that arises during the execution of a program. When 
an exception occurs, the normal flow of the program is disrupted and the program terminates 
abnormally, therefore these exceptions are to be handled. An exception can occur for many 
different reasons. Following are some scenarios where an exception occurs. 

 A user has entered an invalid data. 
 Try to divide a number by zero 
 A file that needs to be opened cannot be found. 

5.1.2 Advantages of Exception Handling 
1. It allows us to control the normal flow of the program and avoids abnormal 

situation.  
2. It also gives us the scope of organizing and differentiating between different error 

types using a separate block of codes.  
5.1.3 Types of Errors 
Three types of errors 
There are basically three types of errors  

1. Syntax errors 
2. Runtime errors 
3. Logic errors 

Syntax errors 
The syntax errors represent grammar errors in the use of the programming language.  
Common examples are: 

 Misspelled variable and function names 
 Missing semicolons 
 Improperly matched parentheses, square brackets, and curly braces 
 Use of undeclared variables 

Runtime errors 
Runtime errors occur when a program with no syntax errors asks the computer to do 
something that the computer is unable to reliably do.  Common examples are: 

 Trying to divide by a value by zero 
 Trying to open a file that doesn't exist 
 Trying to access an element that is out of the bounds of an array 
 Converting invalid string to number  

Logic errors 
Logic errors occur when there is a design flaw in the program.  Common examples are: 

 Multiplying instead of dividing 
 Opening and using data from the wrong file 



117 

 

 Displaying the wrong message 
 5.1.4 Basics of Exception Handling 
 Exception Handling is a mechanism used to handle the exceptions. Java provides 
number of classes to handle exceptions. It uses try-catch block to handle the exception. 
 
 
  try 
  { 
  Statements that causes an exception 
  } 
  catch(Exception class 1  object1) 
  { 
  Statements that handles the exception 
  } 
                    -------------------------- 
    catch(Exception class n  objectn) 
  { 
  Statements that handles the exception 
  } 
  finally 
  { 
  Statements  } 
 
try block 
 It check the statements for exception. If exception occurs, it throws it. 
catch block 
 The catch block follows the try block .It catches the exception thrown by the try block 
and checks with the exception type. If match occurs,  the statements inside the block will be 
executed. A program may have multiple catch blocks. 
finally block 
 It is an optional block. If it is present, it should after all the catch blocks. This block is 
executed, If exception is thrown or not.  
Example 
 public class Example6 
 { 
      public static void main(String args[ ])  
{ 
       int a=30,b=5,c=5,d; 
 try 
 { 
   d = a/(b-c); 
           System.out.println("d= "+d);      
       } 
  catch (ArithmeticException e) 
 { 
        System.out.println("Divide by zero ");       
       } 
 finally 
 { 
  System.out.println("Exception over"); 
        } 
 }    
} 



118 

 

5.1.5 try block 
 It check the statements for exception. If exception occurs, it throws it. 
try 
  { 
  Statements that causes an exception 
  } 
  Eg: 
 try 
 { 
                Int  a[ ]= {10,20,30}; 
               System.out.println(a[3]); 
           } 
 
5.1.6  throwing an exception 
 Normally the try block throws the exception. Suppose if we want to throw the 
exception, the throw keyword is used.  
                      throw  new exception class; 
 
 eg:   throw NumberFormatException(); 
public class Example9 
 {  
     public static void main(String args[ ])  
{ 
       int a=30,b=15,c=5,d; 
 try 
 { 
   if ((b-c) ==0) throw new ArithmeticException(); 
   d = a/(b-c); 
             System.out.println("d= "+d);      
       } 
  catch (ArithmeticException e) 
 { 
        System.out.println("Divide by zero ");       
       } 
 finally 
 { 
  System.out.println("Exception over"); 
        } 
 }    
} 
 
5.1.7  catching an exception 
 The catch block follows the try block .It catches the exception thrown by the try block 
and checks with the exception type. If match occurs,  the statements inside the block will be 
executed.  A program may have multiple catch blocks 
catch(Exception class  object) 
   { 
   Statements to handle the exception 
   } 
Eg:       catch(IOException  e1) 
       { 
              System.out.println(e1); 
       } 



119 

 

5.1.8 finally statement 
 It should be present after all the catch blocks. This block is executed, If exception is 
thrown or not. 
   finally 
   { 

Statements 
 } 

     Eg: 
finally 
  { 
       System.out.println("Exception over"); 
          } 
 
5.2 Multithreading  
 A thread is the path followed when executing a program. All Java programs have at 
least one thread known as the main thread. Every Java thread is created and controlled by 
the java.lang.Thread class. 
 Java supports multithreading. Multithreading is the process of executing multiple 
threads simultaneously. 
5.2.1 Creating Threads 
 There are two ways to create a thread: 

1. By extending Thread class 
2. By implementing Runnable interface. 

5.2.2 Life of a thread 
A thread can have five different states, during its life time a thread is always in any one of 
these states and can move from one state to another. Followings are the states of a thread: 

1. Newborn state 
2. Runnable state 
3. Running state 
4. Blocked state 
5. Dead state 

 

 
Fig 5.1 Life cycle of  Thread 
 



120 

 

1. Newbornstate: A newborn state is a state when a thread object is created, and is 
not yet scheduled for running.It can move to runnable state using start() method or 
move to dead state using stop() method. 

 
2. Runnable state: The runnable state means the thread is ready for the execution  

and waiting for processor. 
 

3. Running state: In this state the processor has given the time to the thread for  
execution. From this state, thread enters into blocked  (when suspend(),sleep(), 
or wait() is called ) or dead state (when stop() is called). 
 

4. Blocked state: If we preventing the thread from entering into runnable/running 
state then this state called as blocked state. It goes to Runnable state when 
resume(),notify() is called or specified time expires. 

 
5. Dead state: When a thread has completed its execution using run() method it is  

called the natural death. And when we stopped or moved a thread to dead state by calling 
stop() method it causes a premature death. 
 

5.2.3 Defining & Running Thread 
 
The thread can be defined by extending the Thread class. 
 

1. Define subclasses by extending the Thread class  
    
class classname extends Thread 
    { 
               
    } 
 

2. Override the run() method in all subclasses. 
 
public void run ( ) 
{ 
 
} 
 

3. Create thread object in the main() method  
 
       classname object = new classname(); 
 

4. Call the start method using the thread object. 
 
Object.start(); 
   
Example 
class Even extends Thread 
{ 
   public void run() 
    { 
      for(int i=0; i<=10; i=i+2) 
          System.out.println("Even number: "+i); 
    } 



121 

 

} 
class Odd extends Thread 
{ 
   public void run() 
    { 
      for(int j=1; j<=10; j=j+2) 
          System.out.println("Odd number: "+j); 
    } 
} 
public class Example7 
 { 
     public static void main(String args[ ])  
{ 
       Even e1 = new Even(); 
 Odd o1 = new Odd(); 
 e1.start(); 
 o1.start(); 
 }   
} 

5.2.4 Thread Methods 

Method Use 

void run() It is used to perform action for a thread 

void start() It starts the execution of the thread 

void sleep(long miliseconds) It stops the currently executing thread for the 
specified number of milliseconds. 

void suspend() It is used to suspend the execution of the 
thread. 

void yield() It is used to bring the thread to runnable 
state. 

void stop() It is used to stop the thread. 

void resume() It is used to resume the suspended thread. 

void wait() It stops the currently executing thread 
temporarily. 

void notify() It is used to bring the thread to runnable 
state. 

boolean isAlive()  It tests if the thread is alive. If alive, it returns 
true, otherwise false. 

 
5.2.5 Thread Priority 

 
Each thread have a priority. Priorities are represented by a number between 1 and 10. 
Default priority of a thread is 5 (NORM_PRIORITY). Normally the OS assigns same priority 
to all threads. The value of MIN_PRIORITY is 1 and the value of MAX_PRIORITY is 10.  
Thread priorities are used by the thread scheduler to decide when each thread should be 
allowed to run. Generally higher-priority threads get more CPU time than lower-priority 
threads. Two methods are used to set and the priorities of the thread. 
      set_priority() method 
 To set a thread's priority,  the setPriority( ) method is used. 
  
final void  setPriority(int level) 
 



122 

 

The  level specifies the new priority setting for the calling thread. The value of level must be 
within the range MIN_PRIORITY and MAX_PRIORITY.  
 
Eg:  t1.setPriority(7); 
    get_priority() method 
  To get the current priority of the thread, getPriority( ) method is used. 
                                    
final int getPriority( ) 
 
Eg:   t1.getPriority(); 
 

5.2.6 Synchronization 
Synchronization in java is the capability to control the access of multiple threads to any 
shared resource. Java Synchronization is better option where we want to allow only one 
thread to access the shared resource.  
Synchronization is achieved by using the concept monitor(semaphore). Only one thread can 
own a monitor at a time. when a thread acquires a lock, it is said to be entered the 
monitor.All other threads trying to acquire that lock are suspended until the first thread exists 
the monitor. To achieve this, java uses synchronized keyword before the method. 
Synchronized method is used to lock an object for any shared resource. 
 
synchronized void methodname() 
{ 
 
} 
    Example 
  class Even extends Thread 
{ 
     synchronized  public void run() 
      { 
         for(int i=0; i<=10; i=i+2) 
             System.out.println("Even number: "+i); 
      } 
} 
5.2.7 Implementing Runnable Interface 
 The thread can also be defined by implementing the runnable interface. 
 

1. Define subclasses by implementing the Runnable interface 
class classname implements Runnable  
{ 
 
} 

2. Override the run() method in all subclasses. 
public void run ( ) 
{ 
 
} 

3. Create thread object in the main() method  
     classname object = new classname(); 
 

4. Call the start method using the thread object. 
new Thread(Object).start(); 
  Example 



123 

 

class Even implements Runnable  
{ 
   public void run() 
    { 
      for(int i=0; i<=10; i=i+2) 
          System.out.println("Even number: "+i); 
    } 
} 
class Odd implements Runnable 
{ 
   public void run() 
    { 
      for(int j=1; j<=10; j=j+2) 
          System.out.println("Odd number: "+j); 
    } 
} 
public class Example8 
 { 
     public static void main(String args[ ])  
{ 
       Even e1 = new Even(); 
 Odd o1 = new Odd(); 
            new Thread(e1).start(); 
 new Thread(o1).start(); 
 }    
} 
5.2.8 Thread Scheduling 
Scheduling is a process of allocating the CPU for execution of the threads. This allocation is 
done based on the priority of the threads. This process is done with the help of operating 
system. 
The operating system selects the thread with highest priority and allocates the CPU for 
execution, other threads are waiting until it completes its execution. After completing, the OS 
gives chance to the next highest priority thread. 
If two or more threads have the same priority ,the OS allocates the CPU in round robin 
manner. This process is continued for all threads. 
Eg: 

Thread T1 T2 T3 T4 T5 T6 

Priority 7 9 8 2 4 8 

 

    Priority Thread name         Allocation of CPU 

 
        9 
 
 
 
        8 
 
 
 
 
        7 
 
 

 
     T2 
 
 
 
   T3,T6 
 
 
 
 
    T1 
 
 

 
           
                     T2 
 
 
 
           T3                      T6 
 
 
 
                        T1 
 
 



124 

 

 
        4 
 
 
 
 
        2 
 
 

 
    T5 
 
 
 
 
     T4 

 
                         T5 
 
 
 
 
                         T4 

 
5.3 I/O streams 
5.3.1 File 
   A file is a collection of related records. A record is the collection of fields. A 
field is a group of characters.                 
 
   Fields 
 

  Regno Name  Marks  

  10101 Kavitha 580  

Records  10105 John 540                                          File    

  10107 Usha 555  

  10109 Ramu 585    

 
     5.3.2 Streams 
A stream is the path along which data flows. There are two kinds of Streams:  

1. Inputstream − The Inputstream reads data from a source and sends it to the 
program.    
 

     Source        Program 
 
 
 

2. Outputstream − The Outputstream takes the data from the program and sends it to 
the destination. 

 
     Program         Destination 
 
 

5.3.3 Advantages 
 

1. Complex file processing operations are easily done. 
2.  It provides a clean abstraction for a complex task. 
3. Serialization of I/O classes provides a solution to serialization of objects. 
4. It is used to filter data along the pipeline of streams, so that we can obtain 

data in a desired format. 
 

5.3.4 The stream classes 
The java.io package contains a large number of stream classes that provide 

capabilities for processing all types of data. These classes may be categorized into two 
groups  based on the data type on which they operate. 
 

1. Byte stream    ----   to perform input and output operations on bytes. 
 



125 

 

2. Character stream  ----  to perform input and output operations on  
                                       Characters 
 
                  
 
 
 
                       Stream Classes 
 
 
 
 
          

   Byte Stream     Character  Stream  
    Classes             Classes 

 
 
 
 
 
   Input Stream   output Stream            Reader           Writer 
 
       Classes       Classes                 Classes                  Classes 
 
 
 
        
 
  Memory          File            Pipe            Memory               File           Pipe 
 
 
 
 
 
             Fig 5.2  Classification of java stream classes     
5.3.5 Byte streams  
Java byte streams are used to perform input and output operations on  bytes. Though there 
are many classes related to byte streams but the most frequently used classes are 
 InputStream and OutputStream. 
 InputStream class 
InputStream class is an abstract class. It is the superclass of all classes representing an 
input stream of bytes. The methods in this class are given below: 
 

Method Use 

int available() It returns the number of bytes that can 
be read from the current input stream. 

int read() It reads the next byte of data from the 
input stream. It returns -1 at the end of 
file. 

int read(byte[ ] b) 
 

It reads some number of bytes from the 
input stream and stores them into the 
buffer array b. 

int read(byte[ ] b, int m, int n) It reads up to n bytes of data from the 

https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html#read(byte[])
https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html#read(byte[],%20int,%20int)


126 

 

 mth position of the input stream into an 
array of bytes. 

void reset(). It moves the pointer to the beginning of 
the input stream 

long skip(long n) It skips n bytes of data from the input 
stream. 

void close() It  closes the current input stream 

 
Eg: To read a file using Bytestream class 
import java.io.*; 
class Example13 
{ 
 public static void main(String args[]) 
{ 
    int c; 
    try 
    { 
 FileInputStream f1= new FileInputStream("s1.dat"); 
 while (( c= f1.read())!=-1) 
   System.out.print((char)c); 
        f1.close(); 
     } 
     catch(IOException e) 
     { 
       System.out.println("I/O error"); 
     }    
 } 
} 
 
OutputStream class 
 
OutputStream class is an abstract class. It is the superclass of all classes representing an 
output stream of bytes. The methods in this class are given below: 
 

Method Use 

void write(int) It is used to write a byte to the current 
output stream 

void write(byte[ ] b) It is used to write an array of byte to the 
current output stream 

void write(byte[ ] b ,int m, int n) It writes n bytes from buffer array of 
data from the mth position. 

void flush() It flushes the current output stream. 

void close() It closes the current output stream 

 
Eg: To create a file using Bytestream class 
 
import java.io.*; 
class Example11 
{ 
 public static void main(String args[]) 
{ 
    int c; 

https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html#reset()
https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html#skip(long)


127 

 

    try 
    { 
 FileOutputStream f1= new FileOutputStream("s1.dat"); 
 System.out.println("Enter text at end press  ctrl+z"); 
        while (( c= System.in.read())!=-1) 
   f1.write(c); 
        f1.close(); 
     } 
     catch(IOException e) 
     { 
       System.out.println("I/O error"); 
     } 
 } 
} 
 

5.3.5 Character streams 
 
Java character streams are used to perform input and output operation on characters. 
Though there are many classes related to character streams but the most frequently used 
classes are  Reader and Writer. 
        Reader class 
Reader class is an abstract class .It is the superclass of all classes representing an input 
stream of characters. The methods in this class are given below: 
 

Method Use 

int available() It returns the number of characters that 
can be read from the current input 
stream. 

int read() It reads the next character of data from 
the input stream. It returns -1 at the end 
of file. 

int read(char [] b) 
 

It reads some number of characters 
from the input stream and stores them 
into the buffer array b. 

int read(char[] b, int m, int n) 
 

It reads up to n characters of data from 
the mth position of the input stream into 
an array of bytes. 

 void reset(). It moves the pointer to the beginning of 
the input stream 

 long skip(long n) It skips n characters of data from the 
input stream. 

void close() It  closes the current input stream. 

 
Eg: To read a file using characterstream class 
import java.io.*; 
class Example14 
{ 
 public static void main(String args[]) 
{ 
    int c; 
    try 
    { 



128 

 

 FileReader f1= new FileReader("s2.dat"); 
 while (( c= f1.read())!=-1) 
   System.out.print((char)c); 
        f1.close(); 
     } 
     catch(IOException e) 
     { 
       System.out.println("I/O error"); 
     }      
 } 
} 
      Writer class 
 
Writer class is an abstract class. It is the superclass of all classes representing an output 
stream of characters. The methods in this class are given below: 
 

Method Use 

 void write(char) It is used to write a character to the 
current output stream 

void write(char[]) It is used to write an array of character 
to the current output stream 

void write(char[] ,int m, int n) It writes n bytes from character array of 
data from the mth position 

void flush() It flushes the current output stream. 

void close() It closes the current output stream 

 
Eg: To create a file using characterstream class 
import java.io.*; 
class Example12 
{ 
 public static void main(String args[]) 
{ 
    int c; 
    try 
    { 
 FileWriter f1= new FileWriter("s2.dat"); 
 System.out.println("Enter text at end press  ctrl+z"); 
        while (( c= System.in.read())!=-1) 
   f1.write(c); 
        f1.close(); 
     } 
     catch(IOException e) 
     { 
       System.out.println("I/O error"); 
     } 
 } 
} 
 
 
 
 
 
 



129 

 

Summary 
 Types of errors  – Syntax ,Logical & Runtime errors 
 Exception  – Error at the run time of a program 
 Handling exception -- using try catch block 
 Multithreading –- Execution of more threads simultaneously 
 Life cycle of thread – 5 states  
 Different thread methods –- run(),start(),stop(),yield(),wait() etc 
 Creating threads – using Thread class, Runnable interface 
 Thread priority –- an integer number assigned by OS and  used by the          

                             thread scheduler to decide when the  thread should be             
                             allowed to run. 

 Thread Scheduling -- process of allocating the CPU for execution of the                   
threads                          

 Thread Synchronization -- capability to control the access of multiple  
                                           threads to any shared resource 

 Stream – path along which the data flows 
 Types of streams – Inputstream, outputstream 
 Stream classes – ByteStream ,CharacterStream 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



130 

 

QUESTIONS 
PART  -  A (2 Marks) 

1. Define exception. 
2. List the types of error. 
3. What are the limitations of error handling?. 
4. What is exception handling?. 
5. What is the use of try block?. 
6. Give the syntax of catch block. 
7.  What is the use of finally statement?. 
8. Define multithreading. 
9. What are the different ways to create a thread?. 
10. List the states of thread. 
11. Write any two thread methods and state their use. 
12. Which method is used to get the priority of thread?. Give its syntax. 
13. Define thread scheduling. 
14. What is thread synchronization?. 
15. Define file. 
16. What is stream?.List is types. 
17. What is inputstream?. 
18. What is outputstream?. 

PART  -  B  (3 Marks) 
1. Explain the use of setPriority() method. 
2. List the advantages of exception handling. 
3. Explain about try block. 
4. Explain about catch block. 
5. Explain about finally block. 
6. List the advantages of streams. 
7. Write any methods of OutputStream class and state their use. 
8. Write any methods of Reader class and state their use. 

  
PART  -  C (5/10  Marks) 

1. Explain in detail exception handling. 
2. Describe about thread methods. 
3. Explain the life cycle of thread with neat diagram. 
4. How you define and run a thread using Thread class?. Give example. 
5. How you define and run a thread using Runnable interface?. Give example. 
6. Explain about thread priority and thread scheduling. 
7. Write short notes on thread synchronization. 
8. Explain about Bytestream classes. 
9. Explain about Characterstream classes. 

 
 
 

 
 
 

 

 
 


	UNIT I INTRODUCTION TO OOPS AND JAVA
	OBJECTIVES
	To understand the basic concepts of object oriented programming features
	To know about the applications and benefits of oops
	To learn the various paradigms of programming languages
	To learn and understand about java environment.
	To learn about the creation and execution of java program.
	1.1. Introduction to OOPS:
	1.1.1. Paradigms of Programming Languages
	Programming paradigms are a way to classify programming languages according to the style of computer programming. It provides model to the programmers to write programs. Some of the common paradigms are
	1.1.2.Basic concepts of Object Oriented Programming
	Objects and Classes
	1.4.Benefits of  OOPs
	1.2. JAVA:
	1.2.1.History
	1.2.2. Java Features
	1.2.3. Java Environment
	Installing the Java Development Kit (JDK) and the Java Runtime Environment
	Download
	There are many versions of the JDK to download, so  choose the one that best suits the types of applications development. Download the latest release of the "Java SE Development Kit (JDK)". (e.g. jdk-6u18-windows-i586.exe)
	Setting the PATH Environment Variable
	If default option is selected during the installation, the JDK installed itself into \Program Files\Java\ jdk1.6.0_18\bin  directory.


	Popular Java Editors
	1.2.5.API (Application Programming Interface)
	Java API is  a set of classes and interfaces that comes with the JDK. Java API is actually a huge collection of library routines that performs basic programming tasks such as looping, displaying GUI form etc. In the Java API, classes and interfa...
	a.lang package
	A collection of classes and methods which includes the basic features of java. This is a default package.
	b. util package
	A collection of classes and methods for providing date and time.
	c.applet package
	A collection of classes and methods for creating and running applets.
	d.abstract window toolkit package
	A collection of classes and methods for implementing graphical user interface.
	e.input/output package.
	A collection of classes and methods for input output operations.
	1.3.Introduction to Java :
	1.3.1. Types of java program
	Save the file as  First.java
	2.Compiling the program
	javac compiler is used to compile the java program. The java source program is compiled into class files. Java compiler creates a class file and the class files contains the byte codes of the program.
	The general form for compiling is
	javac filename.java
	example :
	In the command prompt type
	C:\ javac First.java
	After compilation First.class file is generated.
	3.Executing the program
	java interpreter is used to execute the compiled program.The general form for executing a java file is
	java classname
	example :
	In the command prompt type
	C:\ java First
	When the program is run, the following output is displayed for the above program First.java:
	Welcome to Java world
	1.3.3.Java Tokens:
	Character set
	My Class          // spaces are not allowed
	Literals
	Integer literals:  10 15 2
	Floating-point literals: 2.3 1.1           Character literals: '(' 'J' 'j'            Boolean literals: true false           String literals: "Java" "100" "x"
	Separator
	UNIT II CONTROL STRUCTURES, ARRAYS, AND VECTORS
	OBJECTIVES
	To understand the concepts of variables, constants
	To learn the various operators and evaluation of expressions
	To learn the control structures and looping statements
	To learn and understand about arrays and vectors.
	2.1. Elements:
	2.1.1.Constants :
	2.1.2.Variables :
	Variable is name of reserved area allocated in memory. Its value changes during execution.
	2.1.3.Datatypes :
	2.1.8.Expressions- Evaluation of Expressions

