
 

 

GOVERNMENT OF TAMILNADU 
DIRECTORATE OF TECHNICAL EDUCATION 

CHENNAI – 600 025 
 

STATE PROJECT COORDINATION UNIT 

 
Diploma in Computer Engineering 

Course Code: 1052 
 

M – Scheme 
 

e-TEXTBOOK 
on 

OPERATING SYSTEMS 
for 

III Semester  COMPUTER ENGINEERING 
 
 
Convener for COMPUTER ENGG Discipline:  
Mr.D.ARUL SELVAN 
HOD/POST DIPLOMA IN COMPUTER APPLICATIONS 
THIAGARAJAR POLYTECHNIC COLLEGE 
SALEM 

Team Members for Industrial Instrumentation:  

 

1. Mrs. P.SARADHA 

HOD/COMPUTER ENGG, 

GOVERNMENT POLYTECHNIC COLLEGE 

KRISHNAGIRI -635 001 

 

2. Mrs. B.SANTHI MEENA 

LECTURER /COMPUTER ENGG 

GOVERNMENT POLYTECHNIC COLLEGE 

KRISHNAGIRI -635 001 

                  

           3.Mrs.V.BHUVANESWARI 

LECTURER /COMPUTER ENGG 

GOVERNMENT POLYTECHNIC COLLEGE 

DHARMAPURI-635 205 

 

      

Validated by 

Mrs.P.S.NEELAYATHAKSHI 

LECTURER(SEL.GRADE)/COMPUTER ENGG 

VALIVALAM DESIKAR POLYTECHNIC COLLEGE, 

NAGAPATTINAM-611001 



 

 

UNIT- I 

  INTRODUCTION TO OPERATING SYSTEMS 

 

OBJECTIVES 
o To describe the basic concept of operating system. 

o To give an overview of generations of operating system. 

o To explore several types of operating systems 

o To provide information about major components of operating system 

o To describe the various services of operating system . 

o To know about  the various ways of structuring an operating system. 

INTRODUCTION 
 

An operating system is a program that manages a computer’s hardware. It also 

provides a basis for application programs and acts as an intermediary between the 

computer user and the computer hardware. This unit provides a general overview about  

the major components of operating system and its functions . Also gives information about 

various services of an operating system provides, how they are provided, how they are 

debugged, and about  the various methodologies of operating  system structures. 

 

 BASICS OF AN OPERATING SYSTEM 

An Operating System (OS) is an interface between a computer user and computer 

hardware. An operating system is a software which performs all the basic tasks like file 

management, memory management, process management, handling input and output, and 

controlling peripheral devices such as disk drives and printers. An OS is basically an 

intermediate agent between the user and the computer hardware.    

Some popular Operating Systems include Linux, Windows, OS X, VMS, OS/400, AIX, 

z/OS, etc. 

 

1.1.1 DEFINITION 

An operating system is a program that acts as an interface between the user and the 

computer hardware and controls the execution of all kinds of programs. 

Following are some of important functions of an operating System. 

* Memory Management      * Processor Management 

* Device Management        * File Management 

* Security                             * Control over system performance 

* Job accounting                  * Resources allocator & Manager    

* Controlling programs to prevent errors and improper computer use. 

* Interrupt driver. 



 

 

 

Fig – 1.1 operating system 

 Users and processes access the computers resources through the operating system. 

1.1.2 GENERATIONS OF OPERATING SYSTEM 

Operating systems have a series of revolutionary changes called generations. In 

computers hardware, generations have been marked by major advances in componentry 

from vacuum tubes (first generation) to transistors (Second generation), to integrated 

circuitry (Third generation), to large scale and very large. scale integrated circuitry (Forth 

generation). The successive hardware generations have each been accompanied by 

dramatic reductions in costs, size, heat, emission, and energy consumption, and try dramatic 

increases in speed and storage capacity.  

1. The 1940's - First Generations 

2. The 1950's - Second Generation 

3. The 1960's - Third Generation 

4. Fourth Generation (1971-Present) Microprocessors 

5. Fifth Generation (Present and Beyond) Artificial Intelligence 

1.1.2.1 The First generation  

The earliest electronic digital computers had no operating systems. Machines of the time 

were so primitive that programs were often entered one bit at time on rows of mechanical 

switches (plug boards). Programming languages were unknown . The operating systems of 

the first generation were designed to smooth the transition between jobs. Before the systems 

were developed a great deal of time was lost between the completion of one job and the 

initiation of the next. This was the beginning of batch processing systems in which jobs were 

gathered in groups or batches. Once a job running, it had total control of the machine. An 

each job terminated, control was returned to the operating system.This mode of operation is 

called serial processing.Disadvantages of serial processing  

                                       1.Scheduling 

                                       2.Setup Time 

 

1.1.2.2 The Second generation  



 

 

By the early 1950's, the routine had improved somewhat with the introduction of punch 

cards. The General Motors Research Laboratories implemented the first operating systems 

in early 1950's for their IBM 701. The system of the 50's generally ran one job at a time. 

These were called single-stream batch processing systems because programs and data 

were submitted in groups or batches. 

The second generation of OS was characterized by the development of shared systems with 

multiprogramming and beginnings of multiprocessing. In multiprogramming systems several 

user programs are in main storage at once and the processor is switched rapidly between 

the jobs. In multiprocessing systems several processors are used on a single computer 

system to increase the processing power of the machine. 

1.1.2.3 The Third Generation 

 The systems of the 1960's were also batch processing systems, but they were able to 

take better advantage of the computer's resources by running several jobs at once. So 

operating systems designers developed the concept of multiprogramming in which several 

jobs are in main memory at once;                   

 For example, on the system with no multiprogramming, when the current job paused to 

wait for other I/O operation to complete, the CPU simply sat idle until the I/O finished. The 

solution for this problem that evolved was to partition memory into several pieces, with a 

different job in each partition. While one job was waiting for I/O to complete, another job 

could be using the CPU. 

Another major feature in third-generation operating system was the technique called 

spooling (simultaneous peripheral operations on line). In spooling, a high-speed device like a 

disk interposed between a running program and a low-speed device involved with the 

program in input/output. 

Another feature present in this generation was time-sharing technique, a variant of 

multiprogramming technique, in which each user has an on-line (i.e., directly connected) 

terminal. Time-sharing systems were developed to multiprogramming large number of 

simultaneous interactive users. 

1.1.2.3.1 Multiprogramming 

Sharing the processor, when two or more programs reside in memory at the same time, is 

referred as multiprogramming. Multiprogramming assumes a single shared processor. 

Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has 

one to execute. 

An OS does the following activities related to multiprogramming. 

 The operating system keeps several jobs in memory at a time. 

 This set of jobs is a subset of the jobs kept in the job pool. 

 The operating system picks and begins to execute one of the jobs in the memory. 

 Multiprogramming operating systems monitor the state of all active programs and 

system resources using memory management programs to ensures that the CPU is 

never idle, unless there are no jobs to process. 

1.1.2.3.2 Time Sharing 



 

 

Time-sharing is a technique which enables many people, located at various terminals, to 

use a particular computer system at the same time. Time-sharing or multitasking is a 

logical extension of multiprogramming. Processor's time which is shared among multiple 

users simultaneously is termed as time-sharing. 

1.1.2.4 Fourth Generation 

 With the development of LSI (Large Scale Integration) circuits, chips, operating 

system entered in the system entered in the personal computer and the workstation age. 

Microprocessor technology evolved to the point that it become possible to build desktop 

computers as powerful as the mainframes of the 1970s. Two operating systems have 

dominated the personal computer scene: MS-DOS, written by Microsoft, Inc. for the IBM PC 

and other machines using the Intel 8088 CPU and its successors, and UNIX, which is 

dominant on the large personal computers using the Motorola 6899 CPU family. 

 

1.1.3 TYPES OF OPERATING SYSTEM 

1.1.3.1 Mainframe Operating system 

Mainframe computers are large computers.This supports a large number of terminals.So 

this can be used by any number of users at a  time.The main objective of the mainframe 

operating system is to process many jobs at a time. 

A mainframe operating system provides 

i)       Transaction processing 

                            Transaction system is for processing transactions . 

                            Example: Bank Transaction, Airline Reservation 

ii)       Batch processing 

                       Batch system processes routine tasks 

                             Example: Super Market 

iii)      Timesharing services 

  Timesharing system can be used for multiple remote users to run                       

  tasks at the same time.  

                              Example: IT Companies. 

        Example of a mainframe operating system is OS/390. 

1.1.3.2 Desktop operating system 

Desktop Operating SystemA desktop operating system is one that is intended for a 

desktop computer (Unless you are a network administrator or something like that, you 

probably use a desktop computer.) These OSes usually come with things that one would 

probably use at a desk. For example, Windows sometimes comes with Microsoft Office pre-

installed. 

The control program in a user's machine (desktop or laptop). Also called a "client 

operating system," Windows is the overwhelming majority while the Macintosh 

comes second. There are also several versions of Linux for the desktop.            

1.1.3.3 Multiprocessor operating  system 



 

 

 Each CPU has its own operating system. The Memory divide into an many partition as 

there are CPU’s and give each CPU has its own private memory and its own private copy os 

operating system. 

 

                                         Fig.1.2 Multiprocessor operating system 

Advantages 

               1. Increased Throughput. 

               2. Reduced cost 

               3. High Reliabilty. 

1.1.3.4 Distributed operating System 

Distributed systems use multiple central processors to serve multiple real-time 

applications and multiple users. Data processing jobs are distributed among the processors 

accordingly. 

The processors communicate with one another through various communication lines 

(such as high-speed buses or telephone lines). These are referred as loosely coupled 

systems or distributed systems. Processors in a distributed system may vary in size and 

function. These processors are referred as sites, nodes, computers, and so on. 

The advantages of distributed systems are as follows  

 With resource sharing facility, a user at one site may be able to use the resources 

available at another. 

 Speedup the exchange of data with one another via electronic mail. 

 If one site fails in a distributed system, the remaining sites can potentially continue 

operating. 

 Better service to the customers. 

 Reduction of the load on the host computer. 

 Reduction of delays in data processing. 

1.1.3.5 Clustering Operating System 

Clustering is the use of multiple computers, typically PCs or UNIX workstations, multiple 

storage devices, and redundant interconnections, to form what appears to users as a single 

highly available system. Cluster computing can be used for load balancing as well as for 

high availability.  



 

 

Computer cluster technology puts clusters of systems together to provide better system 

reliability and performance. Cluster server systems connect a group of servers together in 

order to jointly provide processing service for the clients in the network.  

Cluster operating systems divide the tasks amongst the available servers. Clusters of 

systems or workstations, on the other hand, connect a group of systems together to jointly 

share a critically demanding computational task. Theoretically, a cluster operating system 

should provide seamless optimization in every case.  

At the present time, cluster server and workstation systems are mostly used in High 

Availability applications and in scientific applications such as numerical computations 

Advantages 

1. Reliability is high 

2. Portable 

3. Load balancing 

1.1.3.6 Multiprogramming Operating system 

Sharing the processor, when two or more programs reside in memory at the same time, is 

referred as multiprogramming. Multiprogramming assumes a single shared processor. 

Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has 

one to execute. 

The following figure shows the memory layout for a multiprogramming system. 

 

Fig 1.3 Multiprogramming 

An OS does the following activities related to multiprogramming. 

 The operating system keeps several jobs in memory at a time. 

 This set of jobs is a subset of the jobs kept in the job pool. 

 The operating system picks and begins to execute one of the jobs in the memory. 

 Multiprogramming operating systems monitor the state of all active programs and 

system resources using memory management programs to ensures that the CPU is 

never idle, unless there are no jobs to process. 



 

 

Advantages 

 High and efficient CPU utilization. 

 User feels that many programs are allotted CPU almost simultaneously. 

Disadvantages 

 CPU scheduling is required. 

1.1.3.6.  REAL TIME OPERATING SYSTEM 

 A real-time system is defined as a data processing system in which the time interval 

required to process and respond to inputs is so small that it controls the environment. 

The time taken by the system to respond to an input and display of required updated 

information is termed as the response time. So in this method, the response time is 

very less as compared to online processing. 

 

There are two types of real-time operating systems. 

 

Hard real-time systems 

 Hard real-time systems guarantee that critical tasks complete on time. In hard real-

time systems, secondary storage is limited or missing and the data is stored in ROM. 

In these systems, virtual memory is almost never found. 

 

Soft real-time systems 

 Soft real-time systems are less restrictive. A critical real-time task gets priority over 

other tasks and retains the priority until it completes. Soft real-time systems have 

limited utility than hard real-time systems. For example, multimedia, virtual reality, 

Advanced Scientific Projects like undersea exploration and planetary rovers, etc. 

1.1.3.7 Embedded Operating System 

An embedded operating system is a specialized OS for use in the computers built into 

larger systems. An embedded system is a computer that is part of a different kind of m  

achine. Examples include computers in cars, traffic lights, digital televisions, ATMs, airplane 

controls, point of sale (POS) terminals, digital cameras, GPS navigation systems, elevators, 

digital media receivers and smart meters, among many other possibilities.  

 

 

1.1.3.7.1 Definition  

Embedded system is application-oriented special computer system which is scalable on 

both software and hardware. It can satisfy the strict requirement of functionality, reliability, 

cost, volume, and power consumption of the particular application. With rapid development 

of IC design and manufacture, CPUs became cheap. Lots of consumer electronics have 

embedded CPU and thus became embedded systems. For example, PDAs, cellphones, 

point-of-sale devices, VCRs, industrial robot control, or even your toasters can be embedded 

system.  

  .eCos and TinyOS, are examples of Embedded operating system. 

http://searchenterpriselinux.techtarget.com/definition/embedded-system
http://searchcio-midmarket.techtarget.com/definition/digital-television
http://whatis.techtarget.com/definition/point-of-sale-terminal-POS-terminal
http://searchmobilecomputing.techtarget.com/definition/digital-camera
http://whatis.techtarget.com/definition/GPS-navigation-system
http://searchnetworking.techtarget.com/definition/smart-meter


 

 

 

eCos -The Embedded Configurable Operating System (eCos) is an open source, royalty 

free real-time OS intended for embedded applications. The system is targeted at 

high-performance small embedded systems. 

 

TinyOS has become a popular approach to implementing wireless sensor 

network software. Currently, over 500 organizations are developing and contributing 

to an open source standard for Tiny OS. 

  

  1.1.3.8 Time-sharing operating systems 

 Time-sharing is a technique which enables many people, located at various terminals, to 

use a particular computer system at the same time. Time-sharing or multitasking is a logical 

extension of multiprogramming. Processor's time which is shared among multiple users 

simultaneously is termed as time-sharing. 

The main difference between Multiprogrammed Batch Systems and Time-Sharing 

Systems is that in case of Multiprogrammed batch systems, the objective is to maximize 

processor use, whereas in Time-Sharing Systems, the objective is to minimize response 

time. 

The operating system uses CPU scheduling and multiprogramming to provide each user 

with a small portion of a time. Computer systems that were designed primarily as batch 

systems have been modified to time-sharing systems. 

Advantages of Timesharing operating systems are as follows  

 Provides the advantage of quick response. 

 Avoids duplication of software. 

 Reduces CPU idle time. 

 

Disadvantages of Time-sharing operating systems are as follows  

 Problem of reliability. 

 Question of security and integrity of user programs and data. 

 Problem of data communication. 

1.2. OPERATING  SYSTEM  COMPONENTS 

Common operating system components are 

 Process management 

 Memory management 

 I/O management 

 File management 

 Protection system 

 Networking 

 Command interpreter 

 



 

 

1.2.1 PROCESS MANAGEMENT COMPONENT 

Every program running on a computer then it’s background services or applications is a 

process. Process management is an operating systems way of dealing with running multiple 

processes. A process needs certain resources including CPU time, memory, files and I/O 

devices to accomplish its task the OS is responsible for process creation and deletion, 

process suspension and resumption & provision of mechanisms. 

 Tasks of process management:-  

i. Create, load, execute, suspend resume and terminate processes. 

ii. Switch system among multiple processes in main memory. 

iii. Provides communication mechanisms so that processes can send 

data to each other 

iv. Allocate / de – allocate resources property to prevent or avoid 

deadlock situation 

v. Deadlock handling. 

Depending on the operating system as more processes run either each time slice will 

become smaller or there will be a longer delay before each process is given a change to run 

process management involves computing and distributing CPU time as well as other 

resources most operating systems allow a process to be assigned on priority which affects 

its allocation of CPU time. 

1.2.2 MEMORY MANAGEMENT COMPONENT 

 Memory management is the most important part of an operating system . 

There are two types of memory in a computer system. There are  

a. Primary or Main memory 

b. Secondary memory 

1.2.2.1 Main Memory management 

The main memory is a large array of bytes and each byte has its own address. Main 

memory provides the storage for a program that can be accessed directly by the CPU for its 

exertion. So for a program to be executed, the primary task of memory management is to 

load the program into main memory.  

 

Memory management performs mainly two functions as follows :  

       1. Each process must have enough memory in which it has to execute.  

      2. The different locations of memory in the system must be used properly so that each  

          and every process can run most effectively.  

Operating system loads the instructions into main memory then picks up these 

instructions and makes a queue to get CPU time for its execution. The memory manager 

tracks the available memory locations which one is available, which is to be allocated or de-

allocated. It also takes decision regarding which pages are required to swap between the 



 

 

main memory and secondary memory. This activity is referred as virtual memory 

management that increases the amount of memory available for each process.  

The major activities of an operating system in regard to memory-management are 

 Keep track of which part of memory are currently being used and by whom.  

 Decide which processes should be loaded into memory when the memory space is 

free.  

 Allocate and de-allocate memory spaces as and when required.  

1.2.2.2 Secondary-memory Management  

 A computer system has several levels of storage such as primary storage, secondary 

storage and cache storage. But primary storage and cache storage cannot be used as a 

permanent storage because these are volatile memories and its data are lost when power is 

turned off Moreover, the main memory is too small to accommodate all data and programs. 

So the computer system must provide secondary storage to backup the main memory. 

Secondary storage consists of tapes drives, disk drives, and other media.  

The secondary storage management provides an easy access to the file and folders 

placed on secondary storage using several disk scheduling algorithms.  

The four major activities of an operating system in regard to secondary storage 

management are:  

 Managing the free space available on the secondary-storage device .  

 Allocation of storage space when new files have to be written .  

 Scheduling the requests for memory access.  

 Creation and deletion of files.  

Another important part of memory management is managing virtual addnesses. If multiple 

processes are in memory at once they must be prevented from interfering with each other’s 

memory.  This is achieved by having separate address spaces. Each process sees the 

whole virtual address space, typically from address up to the maximum size of virtual 

memory. The operating system maintains a page table that matches virtual addresses to 

physical addresses. These memory allocations are tracked so that when a process terminals 

all memory used by that process can be made available for other processes. 

  

1.2.3 I/O MANAGEMENT COMPONENT 

In computing, I/O refers to the communication between an information processing system 

and the outside world processing system inputs are the signals or data received by the 

system and outputs are the signals or data sent from it. I/O devices are used by a person to 

communication with a computer. A keyboard or a mouse may be an input device for a 

computer, which monitors and printers are considered output devices for a computers. 

Tasks of I/O Management:- 

i. Disk management functions such as free space management 

ii. Storage allocation 

iii. Fragmentation removal 

iv. Head scheduling 



 

 

v. Consistent 

vi. Convenient software to I/O device interface through buffering/ 

catching. 

vii. Custom drivers for each device. 

1.2.4 FILE MANAGEMENT  COMPONENT 

A file is a collection of related information defined by its creator. Computer can store files 

on the disk (secondary storage), which provide long term storage. Some examples of 

storage media are magnetic tape, magnetic disk and optical disk. Each of these media has 

its own properties like speed, capacity, and data transfer rate and access methods.  

A file system is normally organized into directories to make ease of their use. These 

directories may contain files and other directories. Every file system is made up of similar 

directories and subdirectories. Microsoft separates its directories with a back slash and its 

file names aren't case sensitive whereas Unix-derived operating systems (including Linux) 

use the forward slash and their file names generally are case sensitive.  

The main activities of an operating system in regard to file management are creation and 

deletion of files/ folders, support of manipulating files/ folders, mapping of files onto 

secondary storage and taking back up of files.  

1.2.5 PROTECTION SYSTEM 

 Protection (or security) is the most demanding feature of an operating system. Protection 

is an ability to authenticate the users for an illegal access of data as well as system.  

Operating system provides various services for data and system security by the means of 

passwords, file permissions and data encryption. Generally computers are connected 

through a network or Internet link, allowing the users for sharing their files accessing web 

sites and transferring their files over the network. For these situations a high level security is 

expected.  

At the operating system level there are various software firewalls. A firewall is configured 

to allow or deny traffic to a service running on top of the operating system. Therefore by 

installing the firewall one can work with running the services, such as telnet or ftp, and not to 

worry about Internet threats because the firewall would deny all traffic trying to connect to 

the service on that port.  

If a computer system has multiple users and allows the concurrent execution of multiple 

processes, then the various processes must be protected from one another's activities. 

Protection refers to mechanism for controlling the access of programs, processes, or users 

to the resources defined by a computer system. 

1.2.6 NETWORKING  MANAGEMENT COMPONENT 

An operating system works as a network resource manager when multiple computers are 

in a network or in a distributed architecture. A distributed system is a collection of processors 

that do not share memory, peripheral devices, or a clock. The processors communicate with 

one another through communication lines called network The communication-network 

design must consider routing and network strategies, and the problems with network and 

security.  

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer


 

 

Most of today's networks are based on client-server configuration. A client is a program 

running on the local machine requesting to a server for the service, whereas a server is a 

program running on the remote machine providing service to the clients by responding their 

request.  

1.2.7 COMMAND INTERPRETER  

 A command interpreter is an interface of the operating system with the user. The user 

gives commands which are executed by operating system (usually by turning them into 

system calls). The main function of a command interpreter is to get and execute the user 

specified command.  

Command-Interpreter is usually not a part of the kernel, since multiple command 

interpreters may be supported by an operating system, and they do not really need to run in 

kernel mode. There are two main advantages of separating the command interpreter from 

the kernel.  

If you want to change the way the command interpreter looks, i.e., you want to change 

the interface of command interpreter, then you can do that if the command interpreter is 

separate from the kernel. But if it is not, then you cannot change the code of the kernel and 

will not be able to modify the interface.  

If the command interpreter is a part of the kernel; it is possible for an unauthenticated 

process to gain access to certain part of the kernel. So it is advantageous to have the 

command interpreter separate from kernel. 

1.3. OPERATING SYSTEM – SERVICES 

An Operating System provides services to both the users and to the programs. 

 It provides programs an environment to execute. 

 It provides users the services to execute the programs in a convenient manner. 

Following are a few common services provided by an operating system − 

 Program execution 

 I/O operations 

 File System manipulation 

 Communication 

 Error Detection 

 Resource Allocation 

 Protection 

1.3.1 PROGRAM EXECUTION 

Operating systems handle many kinds of activities from user programs to system 

programs like printer spooler, name servers, file server, etc. Each of these activities is 

encapsulated as a process. 

A process includes the complete execution context (code to execute, data to manipulate, 

registers, OS resources in use). Following are the major activities of an operating system 

with respect to program management − 



 

 

 Loads a program into memory. 

 Executes the program. 

 Handles program's execution. 

 Provides a mechanism for process synchronization. 

 Provides a mechanism for process communication. 

 Provides a mechanism for deadlock handling. 

1.3.2 I/O OPERATIONS 

An I/O subsystem comprises of I/O devices and their corresponding driver software. 

Drivers hide the peculiarities of specific hardware devices from the users. 

An Operating System manages the communication between user and device drivers. 

 I/O operation means read or write operation with any file or any specific I/O device. 

 Operating system provides the access to the required I/O device when required. 

1.3.3 FILE SYSTEM MANIPULATIONS 

A file represents a collection of related information. Computers can store files on the disk 

(secondary storage), for long-term storage purpose. Examples of storage media include 

magnetic tape, magnetic disk and optical disk drives like CD, DVD. Each of these media has 

its own properties like speed, capacity, data transfer rate and data access methods. 

A file system is normally organized into directories for easy navigation and usage. These 

directories may contain files and other directions. Following are the major activities of an 

operating system with respect to file management − 

 Program needs to read a file or write a file. 

 The operating system gives the permission to the program for operation on file. 

 Permission varies from read-only, read-write, denied and so on. 

 Operating System provides an interface to the user to create/delete files. 

 Operating System provides an interface to the user to create/delete directories. 

 Operating System provides an interface to create the backup of file system. 

1.3.4 COMMUNICATIONS 

Operating system performs the communication among various types of processes in the 

form of shared memory. In multitasking environment, the processes need to communicate 

with each other and to exchange their information. These processes are created under a 

hierarchical structure where the main process is known as parent process and the sub 

processes are known as child processes.  

The OS handles routing and connection strategies, and the problems of contention and 

security. Following are the major activities of an operating system with respect to 

communication − 

 Two processes often require data to be transferred between them 

 Both the processes can be on one computer or on different computers, but are 

connected through a computer network. 

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information


 

 

 Communication may be implemented by two methods, either by Shared Memory or 

by Message Passing. 

1.3.5 ERROR DETECTION & RECOVERY 

Operating system also deals with hardware problems. To avoid hardware problems the 

operating system constantly monitors the system for detecting the errors and fixing these 

errors (if found). The main function of operating system is to detect the errors like bad 

sectors on hard disk, memory overflow and errors related to I/O devices. After detecting the 

errors, operating system takes an appropriate action for consistent computing.  

This service of error detection and error correction cannot be handled by user programs 

because it involves monitoring the entire computing process. These tasks are too critical to 

be handed over to the user programs. A user program, if given these privileges; can interfere 

with the corresponding operation of the operating systems 

1.3.6 RESOURCE ALLOCATION 

In the multitasking environment, when multiple jobs are running at a time, it is the 

responsibility of an operating system to allocate the required resources (like as CPU, main 

memory, tape drive or secondary storage etc.) to each process for its better utilization. For 

this purpose various types of algorithms are implemented such as process scheduling, CPU 

scheduling, disk scheduling etc 

Following are the major activities of an operating system with respect to resource 

management − 

 The OS manages all kinds of resources using schedulers. 

 CPU scheduling algorithms are used for better utilization of CPU. 

 

 

1.3.7 ACCOUNTING 

Operating system keeps an account of all the resources accessed by each process or 

user. In multitasking, accounting enhances the system performance with the allocation of 

resources to each process ensuring the satisfaction to each process 

1.3.8 SYSTEM PROTECTION 

Considering a computer system having multiple users and concurrent execution of 

multiple processes, the various processes must be protected from each other's activities. 

Protection refers to a mechanism or a way to control the access of programs, processes, 

or users to the resources defined by a computer system. Following are the major activities of 

an operating system with respect to protection − 

 The OS ensures that all access to system resources is controlled. 

 The OS ensures that external I/O devices are protected from invalid access attempts. 



 

 

 The OS provides authentication features for each user by means of passwords. 

1.3.9  SYSTEM CALLS 

The invocation of an operating system routine. Operating systems contain sets of routines 

for performing various low-level operations. For example, all operating systems have a 

routine for creating a directory. If you want to execute an operating system routine from a 

program, you must make a system call.  

This may include hardware-related services (for example, accessing a hard disk drive), 

creation and execution of new processes, and communication with integral kernel services 

such as process scheduling. System calls provide an essential interface between a process 

and the operating system. 

 

There are 5 different categories of system calls 

1. Process control 

2. File manipulation 

3. Device manipulation, 

4. Information maintenance  

5. Communication. 

1.3.9.1 Process Control 

A running program needs to be able to stop execution either normally or abnormally. 

When execution is stopped abnormally, often a dump of memory is taken and can be 

examined with a debugger. The list of process control are given below.  

 end, abort 

 load, execute 

 create process, terminate process 

 get process attributes, set process attributes 

 wait for time 

 wait event, signal event 

 allocate and free memory 

1.3.9.2 File Management 

Some common system calls are create, delete, read, write, reposition, or close. Also, 

there is a need to determine the file attributes – get and set file attribute. Many times the OS 

provides an API to make these system calls. 

 create file, delete file 

 open, close 

 read, write, reposition 

 get file attributes, set file attributes 

1.3.9.3 Device Management 

http://www.webopedia.com/TERM/I/invocation.html
http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/R/routine.html
http://www.webopedia.com/TERM/D/directory.html
http://www.webopedia.com/TERM/E/execute.html
http://www.webopedia.com/TERM/P/program.html


 

 

Process usually require several resources to execute, if these resources are available, 

they will be granted and control returned to the user process. These resources are also 

thought of as devices. Some are physical, such as a video card, and others are abstract, 

such as a file. 

User programs request the device, and when finished they release the device. Similar to 

files, we can read, write, and reposition the device. 

 request device, release device 

 read, write, reposition 

 get device attributes, set device attributes 

 logically attach or detach devices 

1.3.9.4  Information Management 

Some system calls exist purely for transferring information between the user program and 

the operating system. An example of this is time, or date. 

The OS also keeps information about all its processes and provides system calls to report 

this information. 

 get time or date, set time or date 

 get system data, set system data 

 get process, file, or device attributes 

 set process, file, or device attributes 

1.3.9.5 Communication 

These calls are used to exchange information between different processes running in the 

same computer or between different processes running in different systems connected with 

each other.  

 

The different communication calls are : 

 create, delete communication connection  

 send, receive messages  

 transfer status information  

 attach ordetachremote devices  



 

 

                               

 

Fig 1. 4 SYSTEM CALLS EXAMPLE 

 

1.3.10 SYSTEM CALL EXECUTION 

System call is programming interface to the services provided by the OS. It is typically 

written in a high-level language such as C or C++.  

There are 11 steps to making a system call 



 

 

    

                                                  1. 5  System call  Execution 

The steps for making a system call 

Step  1,2,3:    Push  parameter on stack 

Step       4:      Invoke  the systemcall 

Step       5:      Put code for systemcall on register 

Step       6:     Trap to the kernel 

Step 7,8,9,10:  since a number is associated with each system call,    system call 

interface invokes/dispatch intended system call in OS kernel and return status of the 

system call and any return value 

 

Step 11: increment stack pointer C program invoking printf() library call, which calls 

write() system call. 



 

 

 

Fig 1.6  Standard C Library Example 

1.4 OPERATING-SYSTEM STRUCTURES 

For efficient performance and implementation an OS should be partitioned into separate 

subsystems, each with carefully defined tasks, inputs, outputs, and performance 

characteristics. These subsystems can then be arranged in various architectural 

configurations:    

1.4.1 SIMPLE STRUCTURE 

When DOS was originally written its developers had no idea how big and important it 

would eventually become. It was written by a few programmers in a relatively short amount 

of time, without the benefit of modern software engineering techniques, and then gradually 

grew over time to exceed its original expectations. It does not break the system into 

subsystems, and has no distinction between user and kernel modes, allowing all programs 

direct access to the underlying hardware.  

                                                                        
Fig 1.7 Simple structure 

 

1.4.2 LAYERED OPERATING  SYSTEM 



 

 

The components of  layered operating system are organized into modules and 

layers them one on top of the other. Each module provide a set of functions that 

other module can call. Interface functions at any particular level can invoke services 

provided by lower layers but not the other way around 

 

 

Fig 1.8 Layered Operating System 

 

Advantages 

             1. More modules  and  extensible    

             2. Simple construction, debugging, and verification 

 

Disadvantage 

 

1. Interdependencies make it difficult to cleanly separate   functionality among 

layers 

2. less efficient than monolithic designs 

1.4.3 MONOLITHIC OPERATING  SYSTEM 

 Most primitive form of the OS  

 Practically no structure  

 Characterized by a collection of procedures that can call any other procedure  

 All procedures must have a well-defined interface  

 Does not allow information hiding (private functions for procedures)  

 Services provided by putting parameters in well-defined places and executing a 

supervisory call.  

 Basic structure  

o Main program that invokes requested service procedures  

http://www.cs.umsl.edu/~sanjiv/classes/cs4760/glossary.html#sup_call


 

 

o Set of service procedures to carry out system calls  

o Set of utility procedures to help the service procedures  

 User program executes until  

o program terminates  

o program makes a service request  

o a time-out signal occurs  

o an external interrupt occurs  

 Problems with monolithic structure  

o Difficult to maintain  

o Difficult to take care of concurrency due to multiple users/jobs 

 

                                              Fig 1.9 Monolithic Operating System 

1.4.4 MICROKERNAL OPERATING SYSTEM 

 The basic idea behind micro kernel  is to remove all non-essential services from the 

kernel, and implement them as system applications instead, thereby making the 

kernel as small and efficient as possible. 

 Most microkernels provide basic process and memory management, and message 

passing between other services, and not much more.  

 Security and protection can be enhanced, as most services are performed in user 

mode, not kernel mode. 

 System expansion can also be easier, because it only involves adding more system 

applications, not rebuilding a new kernel. 

 Mach was the first and most widely known microkernel, and now forms a major 

component of Mac OSX. 

 Windows NT was originally microkernel, but suffered from performance problems 

relative to Windows 95. NT 4.0 improved performance by moving more services into 

the kernel, and now XP is back to being more monolithic.  

http://www.cs.umsl.edu/~sanjiv/classes/cs4760/intro/sys_call.html
http://www.cs.umsl.edu/~sanjiv/classes/cs4760/glossary.html#sup_call


 

 

 Another microkernel example is QNX, a real-time OS for embedded systems 

 

 

                                                    Fig1.10 Microkernel Operating System 

Advantages 

1.Easier to extend 

2.Easier to port to new architectures 

3.More reliable (less code is running in kernel mode) 

4.More secure 

 

Disadvantages 

            1.No consensus regarding services that should remain in the kernel 

2.Performance overhead of user space to kernel space    

       communication 

 

1.4.5 CONCEPT OF  VIRTUAL MACHINE 

1) A virtual machine takes the layered approach to its logical conclusion.             

    It treats hardware and  the operating system kernel as though they were all hardware 

2) A virtual machine provides an interface identical to the underlying bare hardware 

3) The operating system creates the illusion of multiple processes, each executing on its 

own processor with its own (virtual) memory 

4) The resources of the physical computer are shared to create the virtual machines 

5) CPU scheduling can create the appearance that users have their own processor 

6) Spooling and a file system can provide virtual card readers and virtual line printers 

normal user time-sharing terminal serves as the virtual machine operator’s console. 



 

 

 

                        (a) Non-virtual machine                (b) virtual machine 

                                                Fig 1.11 Virtual Machine 

7) The virtual-machine concept provides complete protection of system resources since 

each virtual machine is isolated from all other virtual machines.  This isolation, however, 

permits no direct sharing of resources. 

8) A virtual-machine system is a perfect vehicle for operating-systems research and 

development.  System development is done on the virtual machine, instead of on a physical 

machine and so does not disrupt normal system operation. 

9) The virtual machine concept is difficult to implement due to the effort required to provide 

an exact duplicate to the underlying machine 

 

1.4.6 BOOTING 

Booting is a process or set of operations that loads and hence starts the operating 

system, starting from the point when user switches on the power button. 

Have you ever given it a thought that when you press the power button on your laptop or 

PC, what happens behind the logo of Windows XP/Vista/Seven or Linux? From the pressing 

of the power button in the computer. there are more than hundred components/peripherals 

that are initialized and thousand lines of code is executed during the process of booting.  

 

 Boot Sequence                              As soon as the computer is turned on, the basic input-

output system (BIOS) on your  system's read-only memory (ROM) chip is "woken up" and 

takes charge.  

1. BIOS first does a power-on self test (POST) to make sure all the computer's 

components are operational.  

2. First, it looks on drive A (unless you've set it up some other way or there is no 

diskette drive) at a specific place where operating system boot files are located. If 

there is a diskette in drive A but it's not a system disk, BIOS will send you a 

http://whatis.techtarget.com/definition/BIOS-basic-input-output-system
http://searchcio-midmarket.techtarget.com/definition/read-only-memory
http://searchcio-midmarket.techtarget.com/definition/POST


 

 

message that drive A doesn't contain a system disk. If there is no diskette in 

drive A (which is the most common case), BIOS looks for the system files at a 

specific place on your hard drive. 

3. Having identified the drive where boot files are located, BIOS next looks at the 

first sector (a 512-byte area) and copies information from it into specific locations 

in RAM. This information is known as the boot record or Master Boot Record. 

4. It then loads the boot record into a specific place (hexadecimal address 7C00) in 

RAM. 

5. The boot record loads the initial system file (for example, for DOS systems, 

IO.SYS) into RAM from the diskette or hard disk. 

6. The initial file (for example, IO.SYS, which includes a program called SYSINIT) 

then loads the rest of the operating system into RAM.  

7. The initial file (for example, SYSINIT) loads a system file (for example, 

MSDOS.SYS) that knows how to work with the BIOS. 

8. One of the first operating system files that is loaded is a system configuration file 

(for DOS, it's called CONFIG.SYS). Information in the configuration file tells the 

loading program which specific operating system files need to be loaded (for 

example, specific device driver. 

9. Another special file that is loaded is one that tells which specific applications or 

commands the user wants to have included or performed as part of the boot 

process. In DOS, this file is named AUTOEXEC.BAT. In Windows, it's called 

WIN.INI. 

10. After all operating system files have been loaded, the operating system is given 

control of the computer and performs requested initial commands and then waits 

for the first interactive user input. 

In order for a computer to successfully boot, its BIOS, operating system and 

hardware components must all be working properly; failure of any one of these three 

elements will likely result in a failed boot sequence. 

    Summary 
 

 An operating system is a program that manages a computer’s hardware and acts as 

a intermediatry between the computer user and the computer hardware. 

 

 There are five generations in operating system 

o First generation is a serial processing type having scheduling and setup time 

problem. 

o Second generation is a multiprocessing system i.e several processors on a 

single computer system 

o Third generation having spooling and multiprogramming technique  

o Fourth generation is a microprocessor technique used in personal computer 

and in workstation. 

o Fifth generation is the present operating system working in artificial 

intelligence. 

 

 There are eight types of operating systems available       ----             Main 

frame,Desktop,Multiprocessor,Distributed,Clustering,Multiprogramming,Real time, 

embedded and time sharing. 

http://searchstorage.techtarget.com/definition/sector
http://searchcio-midmarket.techtarget.com/definition/Master-Boot-Record
http://searchcio-midmarket.techtarget.com/definition/hexadecimal
http://searchstorage.techtarget.com/definition/driver
http://www.webopedia.com/TERM/B/BIOS.html


 

 

 

 The operating system’s major  components are process management, memory 

management, i/o management, File management, Protection system, networking and 

command interpreter. 

 

 The operating system provide services to both the users and to the programs. 

example-Program execution, i/o operations, file system manipulation, 

communication, error detection, resource allocation, protection, system accounting 

and system calls. 

 

 There are four types of structures are in operating system.-simple, layered, 

Monolithic, microkernel, concepts of virtual machine and booting operation. 

 

REVIEW QUESTIONS 

 

                                        PART A (2 Marks) 

1. Define operating system. 

2. What are the functions of an operating system? 

3. Define multiprogramming. 

4. List the types of operating system. 

5. What are the components available in operating system? 

6. List the operating system services. 

7. List the different structure of operating system. 

                             PART B (3 Marks) 

1. Explain clustered operating system. 

2. Explain any one operating system. 

3. Explain any one component of operating system. 

4. Define system call. List the types of system call. 

5. Draw the diagram of Microkernel Architecture. 

6. What is Booting? 

                           PART C (5 Marks) 

1. Briefly explain the generation of operating system. 

2. Explain any two operating systems. 

3. Explain any two operating system component. 

4. Briefly explain the operating system services 

5. Explain the different system calls. 

6. Explain system call execution. 

7. Explain the concept of virtual machine. 

8. Define booting. Explain Booting sequence. 

 

 

 

                                            REFERENCES 

TEXT BOOK 



 

 

1. Operating_Systems_Internals_and_Design_Principles_7th_Edition_ William 

Stallings(www.ebook-dl.com) 

 

2. Silberschatz Operating System Concepts 9th edition    [www.itkhiladi.com] 

 

              WEB SITES 

1. http://www.ittc.ku.edu/~kulkarni/teaching/EECS678/slides/chap2.pdf 

2. https://www.google.co.in/search?q=microkernel+os+images&biw=1366&bih=634&noj

=1& 

3. http://www.cs.iit.edu/~cs561/cs450/syscalls/steps.html 

4. www.tutorialspoint.com/operating_system/os_virtual_memory.htm 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

UNIT – II 

PROCESS MANAGEMENT 
 

OBJECTIVES 
 

At the end of this unit, the student will be able to  

 

 Define the term process and explain the relationship between processes and process 

control blocks. 

 Explain the concept of a process state and discuss the state transitions the 

processes undergo.  

 Understand the distinction between process and thread. 

 Describe the basic design issues for threads. 

http://www.ebook-dl.com/
https://www.google.co.in/search?q=microkernel+os+images&biw=1366&bih=634&noj=1&
https://www.google.co.in/search?q=microkernel+os+images&biw=1366&bih=634&noj=1&
http://www.cs.iit.edu/~cs561/cs450/syscalls/steps.html
https://web.cs.wpi.edu/~cs3013/c07/lectures/Section09-Virtual_Memory.pdf#page=2
https://web.cs.wpi.edu/~cs3013/c07/lectures/Section09-Virtual_Memory.pdf#page=2


 

 

 Explain the difference between user-level threads and kernel-level threads. 

 Define the term process scheduling 

 Explain the various scheduling algorithms. 

 Understand the term IPC and synchronization. 

 Discuss basic concepts related race conditions and mutual exclusion.  

 Define and explain semaphores. 

 List and explain the conditions for deadlock. 

 Explain the difference between deadlock prevention and deadlock avoidance. 

 Understand the approaches to deadlock avoidance, deadlock detection and 

recovery. 

 

 

INTRODUCTION 
Early computer systems allowed only one program to be executed at a time. This 

program had complete control of the system and had access to all the system's resources. 
In contrast, current-day computer systems allow multiple programs to be loaded into memory 
and executed concurrently. This evolution required firmer control and more 
compartmentalization of the various programs. These needs resulted in the notion of a 
process/ which is a program in execution. A process is the unit of work in a modern time-
sharing system. 

 

2.1 PROCESS CONCEPT 
A Process is a sequential program in execution. A process need certain 

resources such as CPU time, memory, files, and 1/0 devices to accomplish its task. 
These resources are allocated to the process either when it is created or while it is 
executing. 

There are two major categories of process are 

1. Operating system processes  -  executing system code  

2. User processes - executing user code.  

 

A process includes the process stack, a data section, a heap and text section. The 
structure of the process in memory is shown in Figure 2.1. 

 The text section includes the compiled program code.  

 The data section contains global variables.  

 The heap is used for dynamic memory allocation.  

 The stack is used for local variables, function parameters and return addresses. 

 

                                                   Max 

 

 

 

 

                                                        0             

 

                                               Fig  2.1 Processes in Memory 

Stack 

 

Heap 

Data 

Text 



 

 

2.1.1 PROCESS RELATIONSHIP 

 When bootstrapping, the kernel manually creates only one process called process 0 

or swapper or idle process 

 The swapper process initializes the kernel data structure, and creates process1. 

 When no processes are ready to run, the kernel executes the swapper to keep the 

CPU occupied. 

 Process1 also initializes some kernel data structures by invoking the kernel init 

function.  

 There is a parent-child relationship among processes.  

 The swapper process is the ancestor of all process; it does not have a parent.  

 Processes created by the same parent are sibling of one another. 

 When the parent dies, all the siblings become children of the init process. The init 

process monitors executions of its children. 

 All processes in the system are organized into a single tree structure. The root of the 

tree is the init process. Each process in the tree is the original parent holds a pointer 

to the youngest child. 

2.1.2 PROCESS STATES 

As a process executes, it changes state. Process state is defined as the current 
activity of the process. There are five states of a process. They are  

 New: The process that has just been created. 

 Ready: The process is waiting to be assigned to a process. 

 Running: The process currently being executed. 

 Waiting: The process is waiting for some event to occur. 

 Terminated: The process has finished execution 

2.1.3 PROCESS STATE TRANSITIONS 

The possible transition of a process is 

 

1. Null  New 

A new process is created to execute a program. 

2. New   Ready 

The operating system will move a process from the new state to the ready state. 

3. Ready  Running 

When it is time to select a process to run, the operating system chooses one of the 
processes in the ready state. 

4. Running   Terminated 

When the process has completed its execution, then it is terminated by the operating 
system.  

5. Running  Ready 

When a process’s time quantum expires, then it is taken out from the CPU and 
placed back in the ready list. 

6. Running  Waiting 

When a process issues an I/O request, then it is taken out from the CPU and placed 
back in the waiting list. 



 

 

7. Waiting  Ready 

A process in the waiting state is moved to the ready state, when the event for waiting 
is completed. 

 

Figure 2.2 shows the general structure of the process state transition diagram. Each 
process may be in one of the following states: 

 

Figure 2.2 Process state transition diagram 

 

Whenever process changes state, the operating system reacts by placing the 
process’s PCB in the list that corresponds to its new state. Only one process can be running 
on any processor at any instant and many processes may be ready and waiting state. 

2.1.4 PROCESS CONTROL BLOCK 

Each process contains the Process Control Block (PCB), which stores the following 
process specific information, as illustrated in Figure 2.3. 

 

 

 

 

 

 

Pointer 
Process 
state 

Process number 

Program counter 

CPU registers 

Memory limits 

List of open files 

. . . 

 

Figure 2.3 Process control block (PCB) 

 

Pointer: Pointer points to another process control block. 

Process State:  Process state may be new, ready running, waiting, halted, and so on. 

Program Counter: It indicates the address of the next instruction to be executed for this 
process.  



 

 

CPU registers: It includes general purpose register, stack pointers, Index registers and 
accumulators etc. 

Memory management information: This information may include the value of base and 
limit register. This information is useful for de-allocating the memory when the process 
terminates. 

Accounting information: This information includes the amount of CPU and real time used, 
time limits, account numbers, job or process numbers, and so on.  

I/O status information: This information includes the list of I/O devices allocated to the 
process, a list of open files, and so on.  

 

In brief, the PCB simply serves as the repository for any information that may vary 
from process to process.  

 

2.1.5 CONTEXT SWITCHING 

Whenever an interrupt arrives, the CPU must save the state of the currently running 
process, then switch into kernel mode to handle the interrupt, and then restore the state of 
the interrupted process. When CPU switches to another process, the system must save the 
state of the old process and load the saved state for the new process is called context 
switching.  

Saving and restoring states involves saving and restoring all of the registers and 
program counter(s), as well as the process control blocks.  So Context switching creates 
overhead. Context switch time is highly dependent on hardware support. 

 

2.1.6 THREADS 

A thread is an execution unit consists of a thread ID, a program counter, a 
register set and a stack. It shares its code section, data section, and resources with other 
threads belonging to the same process. A traditional process has a single thread of control. 
If a process has multiple threads of control, it can perform more than one task at a time. A 
thread is sometimes called a light weight process. Fig 2.4 shows the single threaded 
process. 

 

 

 

 

 

 

  

 

 

 

 

Figure 2.4 Single threaded process 

2.1.7 CONCEPT OF MULTITHREADS 

When a process has multiple threads it is able to perform multitasking at a time. Most 
of the modern software applications run with the multithreading concept.  

For example, a web browser can have a process running based on the user request  
that can have a thread that displays images or text while another thread retrieving data from 
the network.  

  

 

 

 

                    Thread 

 

Code Data Files 

Stack Register 



 

 

Threads within the same process can exchange information through their common 
address space and have access to the shared resources of the process. Threads in different 
processes can exchange information through shared memory. 

  

 

    Thread  

 

 

Thread                

 

Thread 

 

Figure 2.5 Multithreaded processes 

Difference between Process and Thread : 

S.No Process Thread 

1. Process is heavy weight Thread is light weight 

2. 

Process switching needs interaction 
with operating system. 

 

Thread switching does not need to 
interact with operating system 

3. 

In multiple processing environments, 
each process executes the same 
code but has its own memory and file 
resources. 

All threads can share same set of 
open files, child processes. 

4. 
If one process is blocked, then no 
other process can execute until the 
first process is unblocked. 

While one thread is blocked and 
waiting, a second thread in the same 
task can run. 

2.1.8 BENEFITS OF THREADS 

1. Takes less time to create a new thread and terminate a thread than a process. 

2. Less time required to switch between two threads within the same process. 

3. Multithreading increases the responsiveness to the user. It allows a program to 

continue running even if part of it is blocked.  

4. Threads share the memory and the resources of the process to which they belong. 

5. Threads allow utilization of multiprocessor architectures to a greater scale and 

efficiency. 

 

2.1.8 TYPES OF THREAD 

Two types of threads are 

 User Level Threads − User managed threads. 

 Kernel Level Threads − Operating System managed threads acting on kernel, an 

operating system core. 

2.1.8.1 User Level Threads 

Code Data Files 

Stack 

Register 

Stack Stack 

Register Register 



 

 

User threads are above the kernel space. User-Level threads are managed entirely 

by the user level library.  In a user level thread, all of the thread management works are 

done by the user space and the kernel knows nothing about user-level threads.  The thread 

library contains code for creating and destroying threads, data transmission between 

threads, scheduling thread execution and maintains thread contexts.  

Advantages 

 Thread switching can all be done without the  involvement of the kernel 

 User level threads are fast to create and manage. 

Disadvantages 

 Lack of co-ordination between user level threads and kernel. 

 User-level thread requires non-blocking systems call i.e., a multithreaded kernel.  

2.1.8.2 Kernel Level Threads 

All thread operations are implemented in the kernel and the operating system 

schedules all threads in the system. Threads managed by operating system are called 

kernel-level threads. The Kernel performs thread creation, scheduling and management in 

Kernel space. Kernel threads are generally slower to create and manage than the user 

threads. 

 

Advantages 

 Kernel can simultaneously schedule multiple threads from the same process on 

multiple processes. 

 If one thread in a process is blocked, the Kernel can schedule another thread of the 

same process. 

Disadvantages 

 Kernel threads are generally slower to create and manage than the user threads. 

 Transfer of control from one thread to another within the same process requires a 

mode switch to the Kernel. 

2.2 PROCESS SCHEDULING 
 

2.2.1 BASIC CONCEPTS 

 

The method of determining which process in the ready state should be moved to 

running state is known as process scheduling. Process scheduling is an essential part of 

Multiprogramming operating systems.  



 

 

In a multiprogramming environment, more than one process resides in main memory 

at a time. To maximize CPU utilization, when one process has to wait, the operating system 

takes the CPU away from that process and gives the CPU to another process.  Scheduling 

of this kind is a fundamental operating-system function. Almost all computer resources are 

scheduled before use. Since CPU is one of the primary computer resources, its scheduling 

is central to the operating system design. 

 

2.2.2 SCHEDULING OBJECTIVES 

 

The primary objective of the process scheduling is to keep the CPU busy all the time 

in order to maximize the system performance and to deliver minimum response time for all 

programs. Some goals that are desirable in all systems are 

 

 Fairness to all processes 

 Minimize overhead 

 Balance available resources 

 Maximize throughput 

 

 

 

2.2.3 TYPES OF SCHEDULERS 

 

When more than one process is runnable, the operating system must select one 
process for execution. The part of the operating system concerned with this decision is 
called the scheduler, and algorithm it uses is called the scheduling algorithm. 

There are three types of schedulers available are 

 Long term scheduler 

 Short term scheduler 

 Medium term scheduler 

 

Long term scheduler 

It is also known as job scheduler. It selects processes from the queue and loads 
them into memory for execution. Primary aim of the Job Scheduler is to maintain a good 
degree of Multiprogramming. 

 

Short term scheduler 

It is also called as CPU scheduler.  It selects a process among the processes that 
are ready to execute and allocates CPU to one of them. The primary aim of this scheduler is 
to maximize CPU performance. Short term schedulers are faster than long term schedulers. 

 

Medium term scheduler 



 

 

Medium term scheduler temporarily removes processes from main memory and 
places them on secondary memory or vice versa. This is commonly referred to as swapping 
out or swapping in. It reduces the degree of multiprogramming. 

 

  

 Swap in Swap out 

  

 

 

 

     

 

 

 

 

Figure 2.6 Types of schedulers 

 

2.2.4 SCHEDULING CRITERIA 

There are various CPU scheduling algorithms are available and they have different 
properties. Many different criteria have been recommended to compare the scheduling 
algorithms. They are : 

1. CPU utilization : 

The scheduling algorithm should keep the CPU as busy as possible. 
 

2. Throughput : 

It is the total number of processes that are completed per unit time. 
 

3. Turnaround time : 

The interval between the time of submission of the process and the time of 
completion of the process. 
 

4. Waiting time : 

The average period of time a process spent waiting in the ready queue. 
5. Response time : 

Amount of time it takes from when a request was submitted until the first response is 
produced. It is necessary to increase CPU utilization and throughput and to reduce 
turnaround time, waiting time, and response time. 

 

2.2.5 SCHEDULING ALGORITHMS 

 

CPU scheduling algorithm may use different criteria for selecting which of the 
processes in the ready queue is to be allocated the CPU.  

Scheduling algorithm may be preemptive or non-preemptive. In preemptive 
scheduling, a running process may be replaced by a higher priority process at any time. In 
non-preemptive scheduling, once the CPU has been allocated to a process, the process 
continues its execution until it terminates or waits for I/O. There are many different CPU-
scheduling algorithms. 

 

2.2.5.1 First-Come First-Served scheduling 

 

Short term 
scheduler 

Ready Queue 

Medium term 
scheduler 

Job Queue 

Partially Executed Processes 
or Suspended process 

Processes waiting for I/O 

CPU
U 

I/O 

Long term scheduler End 



 

 

It is the simplest scheduling algorithm. With this scheme, the process that requests 
the CPU first is allocated the CPU first. FCFS is a non-preemptive scheduling algorithm.  

Let us consider the set of processes that arrive at time 0. The CPU-burst time is 
given in milliseconds. 

 

Process Burst time 

P1 21 

P2 6 

P3 3 

 

Gantt chart is a bar chart that shows a particular schedule, including the start and 
finish times of each of the participating processes. 

 

Figure 2.7 shows the Gantt chart of FCFS scheduling, if the processes arrivein the 
order p1, p2 & p3. 

 

P1 P2 P3 

                   0                                                             21                     27           30 

Figure 2.7 Gantt chart 

 

Waiting time:  

 

Process Waiting time 

P1 0 

P2 21 

P3 27 

 

Average waiting time: 

 

Average waiting time =     

 

     =       

      

     =     16 milliseconds 

In FCFS policy, the average waiting time is not generally minimum. This may vary 
substantially if the processes CPU burst times vary greatly. FCFS has relatively low 
throughput for heavy workload. 

 

2.2.5.2 Shortest-Job-First scheduling 

 

Shortest Job First (SJF) is a scheduling policy that selects the waiting process with 
the smallest execution time to execute next. If two processes have the same length, FCFS 



 

 

scheduling is used to break the tie. SJF algorithm may be either preemptive or non-
preemptive.  

 A preemptive SJF algorithm will preempt the currently running process, whereas a 
non-preemptive SJF algorithm will allow the currently running process to finish its CPU-burst. 

 

2.2.5.2.1 Non-preemptive SJF 

 

Let us consider the set of process with burst time in milliseconds. Arrival time of the 
processes is 0 and the processes arrive in the order of p1, p2 and p3 

 

Process Burst time 

P1 21 

P2 3 

P3 6 

. 

 

Gantt chart: 

 

P2 P3 P1 

                    0          3                       9                                                               30             

 

 

 

 

 

 

Waiting time: 

 

Process Waiting time 

P1 9 

P2 0 

P3 3 

 

Average waiting time: 

 

Average waiting time  =  

 

     =  

 

                     = 4 milliseconds 



 

 

Shortest-Job-First scheduling is an optimal algorithm. It gives the minimum average 
waiting time for a given set of processes. 

 

2.2.5.2.1 Preemptive SJF 

 

Let us consider the following three processes, with the length of the CPU burst given 
in milliseconds 

 

Process Arrival Time Burst time 

P1 0 21 

P2 1 3 

P3 2 6 

 

If the processes arrive at the ready queue at the times shown in the above table, then 
the resulting preemptive SJF schedule is as depicted in the following Gantt chart 

 

P1 P2 P3 P1 

      0        1                          4                                      10                                                      30   

 

 Process p1 is started at time 0, since it is the only process in the queue. 

 Process p2 arrives at time 1. The remaining time for process p1 (20 milliseconds) is 

larger than the time required by process p2 (3 milliseconds), so process p1 is 

preempted and process p2 is scheduled.  

 

 Process p3 arrives at time 2 with burst time 6ms. The burst time of process p3 is 

larger than process p2. So process p2 continues its execution. After the completion 

of process p2 process p3 is scheduled since the burst time of process p3 (6 

milliseconds) is lesser than process p1.  

 Finally process p1 is scheduled.    

 

Waiting time: 

Waiting time for process p1: The process p1 is scheduled at time 0 and preempted at 
time 1. Then it is again scheduled for execution at time10ms. So the waiting time of process 
p1 is calculated as follows 

 

Waiting time = (Entry time of next scheduling – Exit time of first scheduling) – Arrival time. 

 

Waiting time for p1 = (10 – 1) – 0 

                               = 9 ms 

 

Process p2 and p3 are not preempted during execution. So the waiting time for p2 and p3 
are 

Waiting time = Entry time of scheduling – Arrival time  

Waiting time for p2 = 1 – 1 = 0ms 

Waiting time for p3 = 4 – 2 = 2ms 



 

 

 

Process Waiting time 

P1 9 

P2 0 

P3 2 

Average waiting time: 

 

Average waiting time  =  

 

     =  

 

                     = 3.67 milliseconds 

 

2.2.5.3 Round-Robin Scheduling 

 

The round-robin (RR) scheduling algorithm is designed especially for timesharing 
systems. It is similar to FCFS scheduling, but preemption is added to enable the system to 
switch between processes. A small unit of time, called a time quantum or time slice, is 
defined. The ready queue is treated as a circular queue. The CPU scheduler goes around 
the ready queue and allocating the CPU to each process. Let us calculate the average 
waiting time for 3 processes with the following table. 

 

 

 

Process Burst time 

P1 21 

P2 6 

P3 3 

 

Let us consider the time quantum of 3 milliseconds. Process P1 gets the first 3 
milliseconds. Since it requires another 18 milliseconds, it is preempted after the first time 
quantum, and the CPU is given to the next process in the queue, process P2. Process P2 is 
preempted after 3 milliseconds.   

 The CPU is then given to the next process, process P3. Process P3 completes its 
execution since its burst time is 3ms. Once each process has received 1 time quantum, the 
CPU is returned to process P1 for an additional time quantum. The resulting RR schedule is 
as follows: 

 

Gantt chart:    

             

       0          3          6          9          12         15          18           21         24         27        30 

P1 P2 P3 P1 P2 P1 P1 P1 P1 P1 



 

 

                  

Waiting Time: 

Process P1 = 0 + (9 – 3) + (15 – 12) = 9ms 

Process P2 = 3 + (12 – 6) = 9ms 

Process P3 = 6ms       

Process Waiting time 

P1 9 

P2 9 

P3 6 

 

 Average waiting time: 

 

Average waiting time  =  

     =  

 

                     = 8 milliseconds 

2.2.6 MULTIPROCESSOR SCHEDULING 

Multiprocessor Operating System refers to the use of two or more central 
processing units (CPU) within a single computer system. These multiple CPUs sharing 
the computer bus, memory and other peripheral devices. Multiprocessor scheduling refers to 
a set of procedures and mechanisms built into the operating system to execute the available 
processes by multiple processors. 

On a uniprocessor, scheduling is one dimensional. On a multiprocessor, scheduling 
is two dimensional. The scheduler has to decide which process to run and which CPU to run 
it on. 

Multiprocessor scheduling is generally complicated for both unrelated processes and 

related processes. If the processes are unrelated then each process can be scheduled 

without regard to the other. If all the processes have related to one another then the 

scheduling is complicated. 

2.2.7 TYPES OF MULTIPROCESSOR SCHEDULING 

2.2.7.1 Timesharing 

This is the simplest scheduling algorithm for dealing with unrelated processes. The 
unrelated processes which are ready to execute are placed in different queues depending 
on their priority. Based on the priority, the processes are allocated the available processors. 

http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail


 

 

 
Figure 2.8 Time sharing scheduling 

 

In figure 2.8, there the 16 CPUs are all currently busy. There are 14 set of prioritized 
processes are waiting to run. The first CPU to finish its current work is CPU 4. The highest 
priority process A is allocated to CPU4. Next, CPU 12 goes idle and chooses process B. 

This scheduling is reasonable as long as the processes are completely unrelated. 

2.2.7.2 Space Sharing 

This multiprocessor scheduling can be used when processes are related to one 
another. A single process creates multiple threads that work together. Scheduling multiple 
threads at the same time across multiple CPUs is called space sharing. 

 

The simplest space sharing algorithm works like this. 

Assume that an entire group of related threads is created at once. 

i. All the threads start its execution when there is enough number of 

CPUs available. If there are not enough CPUs, none of the threads are 

started.   

ii. Each thread holds its CPU until it terminates. If the threads wait for I/O, 

it continues to hold the CPU. The CPU is idle until the completion of 

I/O. 

iii. The same algorithm is applied for the next batch of threads.  

 

2.2.7.3 Gang Scheduling 

Gang scheduling is used to schedule in both time and space together. 

 

It has three parts 

1. Groups of related threads are scheduled as a unit, a gang. 

2. All members of a gang run simultaneously, on different timeshared CPUs. 

3. All gang members start and end their time slices together. 

 

2.2.7 PERFORMANCE EVALUATION OF THE SCHEDULING 

Selecting a proper scheduling algorithm is difficult task. Criteria are often defined in 
terms of CPU utilization, throughput, waiting time or response time. For evaluating 
algorithms following methods are used. 



 

 

1. Deterministic modeling 
2. Queuing model 
3. Simulation 

 

2.2.7.1 DETERMINISTIC MODELING 

One type of analytic evaluation method is Deterministic modeling. This method 
takes a particular predetermined workload and defines the performance of each algorithm for 
that workload. Deterministic modeling is simple and fast. It gives us exact numbers, allowing 
us to compare the algorithms. The main uses of deterministic modeling are in describing 
scheduling algorithms and providing examples. In general deterministic modeling is too 
specific and requires too much exact knowledge. 

 

2.2.7.2 QUEUING MODEL 

 

The computer system is described as a network of servers. Each server has a queue 
of waiting processes. The CPU is a server with its ready queue, as is the I/O system with its 
device queues. Knowing arrival rates and service rates, we can compute utilization, average 
queue length, average wait time, and so on. This area of study is called queueing-network 
analysis. 

As an example, let η be the average queue length, let W be the average waiting time 
in the queue, and let λ be the average arrival rate for new processes in the queue. We 
expect that during the time W that a process waits, λ x W new processes will arrive in the 
queue. 

If the system is in a steady state, then the number of processes leaving the queue 
must be equal to the number of processes that arrive. Thus, 

 

η = λ  x W. 

 

This equation, known as Little's formula. 

 

Queueing analysis can be useful in comparing scheduling algorithms, but it has some 
limitations.  

 

2.2.7.3 SIMULATION 

 

Simulation is used for more accurate evaluation of scheduling algorithms. It involves 
programming a model of the computer system. Software data structures represent the major 
components of the system. The simulator has a variable representing a clock. As this 
variable's value is increased, the simulator modifies the system state to reflect the activities 
of the devices, the processes, and the scheduler. The data to drive the simulation can be 
generated in several ways. The most common method uses a random-number generator. 
Simulations can be expensive, often requiring hours of computer time  

 

2.3 INTERPROCESS COMMUNICATION AND SYNCHRONIZATION 
Concurrently executing processes in the operating system may be either 

independent processes or cooperating processes. A process is independent if it cannot 
affect or be affected by the other processes executing in the system. Any process that does 
not share data with any other process is independent. A process is cooperating if it can 
affect or be affected by the other processes executing in the system. Any process that 
shares data with other processes is a cooperating process. 



 

 

Interprocess communication (IPC) is a mechanism that allows the exchange of data 
between processes. It allows the processes to synchronize their action without sharing the 
same address space. 

There are two Models of Interprocess communication. They are 

1. Shared Memory 

2. Message passing 

2.3.1 SHARED MEMORY: 

An area of memory that is shared among the cooperating processes is known as 
shared memory.  Normally the shared-memory region exists in address space of the process 
creating the shared memory segment. Other processes that wish to communicate using this 
shared memory segment must attach it to their address space. The processes can then 
exchange information by reading and writing data in the shared areas. 

 

Example: producer-consumer problem 

Consider two processes named as producer and consumer. A producer process 
produces information that is consumed by a consumer process. The inter-process 
communication occurs through a shared buffer that can be filled by the producer and 
emptied by the consumer. A producer can produce one item while the consumer is 
consuming another item. The producer and consumer must be synchronized, so that the 
consumer does not try to consume an item that has not yet been produced. 

Two types of buffers used are 

1. Unbounded buffer – Variable size buffer 

2. Bounded buffer – Fixed size buffer 

 

Let us assume that the bounded buffer is used as shared memory. The shared buffer 
is implemented as a circular array with two pointers: in and out.  

 

#define BUFFER_SIZE 10 

int in = 0; 

int out = 0; 

int count = 0; 

int buffer[BUFFER_SIZE]; 

 

 

Producer process  

Void Producer() 

{ 

int item; 

while (true) 

{ 

item = produceitem(); 

if(count == BUFFER_SIZE); /* do nothing */ 

buffer[in] = item; 

in = (in + 1) % BUFFER_SIZE; 

count++; 

} 

 

 



 

 

Consumer process 

Void consumer() 

( 

Int item; 

while (true) { 

if(count == 0); /* do nothing */ 

item = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

count--; 

} 

 

From the above example, it is clear the both the producer process and the consumer 
process attempt to access the shared buffer concurrently. 

  

2.3.2 MESSAGE PASSING 

Message passing is the facility that allows processes to communicate and to 
synchronize their actions without sharing the same address space. 

 

Example: Chat program allows the participants to communicate each other by exchanging 
the messages. 

 

 

Two operations of message passing system are 

1. Send(message) 

2. Receive( message) 

There are two types of communication of message passing system. They are 

 Direct communication 

 Indirect communication 

 

2.3.2.1 DIRECT COMMUNICATION 

In this type of communication each process wanting to communicate must explicitly 
name the recipient or sender of the communication. The general syntax of send and receive 
messages are 

The syntax of the send and receive are 

  Send (P, Message) 

Send a message to process P. 

  Receive (Q, Message) 

Receive a message from process Q. 

                         Sender process (A)                        Receiver process (B) 

 

 

 

 

 

Figure 2.9 Direct communication 

 

 

Send (B, 
message) 

Example 

Send (B, 
Hai, How 
are you?) 

Receive(A, 
Message) 

Example 

Receive(A, 
Hai, How are 
you?) 



 

 

 

Example – Producer –Consumer Problem 

 

Process A  Process B 

while (TRUE) { while (TRUE) { 

 produce an item receive(A,item)  
send (B, item) consume-item 
 } } 

 

Properties of direct communication link are : 

 

 Links are established automatically between each pair of processes that wants to 

communicate. 

 A link is associated with exactly one pair of communicating processes. 

 Between each pair there exists exactly one link. 

 The link may be unidirectional or bi-directional. 

 

 

 

2.3.2.2 INDIRECT COMMUNICATION 

           In this type messages sent to and received from mailboxes (also referred as ports).  

The syntax of the send and receive are 

Send (B, Message) 

Send a message to mail box B. 

  Receive (B, Message) 

Receive a message from mail box B. 

Process can communicate only if they share a mailbox. Each mailbox has a unique id 
Mailboxes can be seen as objects into which process placed their messages and the placed 
messages can be removed by other processes. 

Properties of Indirect communication link are 

 Link is established only if share a common mailbox. 

 A link may be associated with many processes. 

 Each pair of processes may share several communication links 

 The link may be unidirectional or bi-directional. 

 

 

 

 

 
Figure 2.10 Indirect Communication 

 

There are two types of mail boxes. They are 

1. Process owned - The process that creates the mail box is the owner. Owner can only 

receive messages through this mailbox. Other processes can only send messages to 

this mail box. When the owner terminates, the mail box disappears. 

2. System owned – The operating system is the owner of this mailbox. It is independent 

and is not attached to any particular process. 

Mail Box M1 Mail Box M2 

Process P1 Process P2 Process P3 



 

 

 

2.3.3 RACE CONDITION 

The situation where more than one processes access and manipulate shared data at 
a time then the result of the execution  depends on the order in which the access takes 
place, is called a race condition.  

 

2.3.4 CRITICAL SECTION 

Consider more than one of processes competing to use some shared data. Each 
process has a code segment, called critical section in which the process can access 
common variables and files.  Critical section is used to avoid race condition. The main 
feature of the operating system is that, when one process in critical section, no other is 
allowed to be in its critical section. 

 

Each process has three sections. They are  

Entry section: This section contains code which is used by the processes to get permission 
to enter into the critical section. 

Remainder section: contains the remaining codes. 

Exit section: contains code that is used by the processes to come out of the critical section 

While(true) 

{ 

 

      Critical section 

 

 

Remainder section 

} 

The critical sections should satisfy the following requirements. 

1. Mutual exclusion: Only one process can be in the critical section at a time. i.e., If one 
process is executing in its critical section, then other processes are not allowed to execute 
their critical section. 

2. Progress: If no process is executing in its critical section then only those processes that 
are not executing in their remainder sections will enter its critical section next. 

 

3. Bounded waiting: After a process made a request to enter its critical section and beforeit 
is granted the permission to enter, there exists a bound on the number of times that other 
processes are allowed to enter. 

 

2.3.5 MUTUAL EXCLUSION 

 

If process Pi is executing in its critical section, then no other processes can be 
executing in their critical sections is called critical section. 

 

We consider only two processes that interchange execution between their critical 
sections and remainder sections. Both processes share the common integer variable. 

 

Let us consider the name of the processes is p0 and p1, the name of the variable is 
turn and flag. If flag [0] is true then process P0is ready to enter its critical section. The 
variable turn indicates whose turn it is to enter its critical section. That is, if turn == 0, then 
process P0 is allowed to execute in its critical section.  

Entry section 

Exit section 



 

 

do 
{ 
flag[0]=true; 
turn = 1; 
while(flag(1) && turn==1); 
 
critical section 
 
flag[0]=false; 
} while(true) 

To enter the critical section, process P0 first sets flag [0] to be true and then sets turn 
to the value. Then it checks the condition. Since the condition is false, process p0 performs 
no-operation at entry section. It enters its critical section. Once it completes its execution, it 
sets the flag value as false. The same procedure used by process p1 to executes its critical 
section. From the example the mutual exclusion is preserved. 

 

 

 

 

2.3.6 SEMAPHORES 

Semaphore is a hardware based solution used to solve critical section problem. A 
Semaphore is indicated by an integer variable S. Semaphore variable is accessed through 
two operations wait() and signal(). 

 
1. Wait: It is used to test the semaphore variable. It decrement the semaphore value. If the 

value become negative, then the execution of wait() operation is blocked.  

2. Signal: It increment the semaphore value. 

Entry to the critical section is controlled by wait operation and exit from a critical 
section is taken care by signal operation. The wait and signal operation are also called P and 
V operations. If number of processes attempts the wait operation, only one process will be 
allowed to proceed. Thus mutual exclusion is enforced 

 Pseudo code for wait 

Wait(S) 

{ 

While(S<=0) do no-op; 

S=S-1; 

} 

 

Pseudo code for signal 

Signal(S) 

{ 

S=S+1 

} 

 

Semaphores are of two types 

1. Binary Semaphore – It can take the value 0 and 1 only. 

2. Counting semaphore – It can take any positive integer value. 

 

 



 

 

2.4 DEADLOCK 

 

2.4.1 DEFINITION  

In a multiprogramming environment, several processes may compete for a finite 
number of resources. A process requests resources; if the resources are not available at that 
time, the process enters a waiting state. Sometimes, a waiting process is never again able to 
change state, because the resources it has requested are held by other waiting processes. 
This situation is called a deadlock. 

 

Deadlocks are a set of blocked processes each holding a resource and waiting to 
acquire a resource held by another process. 

 

 

Figure 2.11 Traffic gridlock is a real time example for deadlock situation 

 

 

 

Figure 2.12 Deadlock in operating system 

 

A process must request a resource before using it and must release the resource 
after using it. A process may request as many resources as it requires for completing its 
task. Obviously, the number of resources requested may not exceed the total number of 
resources available in the system.  

 



 

 

Under the normal mode of operation, a process may utilize a resource in only the 
following sequence: 

 

 Request. The process requests the resource. If the request cannot be granted 

immediately, then the requesting process must wait until it can acquire the resource. 

 Use. The process can use resource. 

 Release. Release the resource. 

 

 

 

2.4.2 DEADLOCK CHARACTERISTICS 

Deadlock can arise if four conditions hold simultaneously 

1. Mutual exclusion.  

At least one resource must be held in a non-sharable mode; If any other process 
requests this resource, then that process must wait for the resource to be released. 

 

2. Hold and wait.  

A process holding at least one resource is waiting to acquire additional resources 
held by other processes. 

 

3. No preemption.  

Resources cannot be preempted; that is, a resource can be released only voluntarily 
by the process holding it, after that process has completed its task. 

 
4. Circular wait.  

A set {P0, P1 … Pn}   of waiting processes must exist such that P0is waiting for a 
resource held by P1, P1 is waiting for a resource held by P2, ... , Pn-1 is waiting for a 
resource held by Pn, and Pn is waiting for a resource held by P0. 

 

2.4.3 DEAD LOCK PREVENTION 

Deadlocks can be prevented by preventing at least one of the four required 

conditions. 

1. Mutual Exclusion 

The mutual-exclusion condition must hold for non-sharable resources. For example 
printers and tape drives cannot be simultaneously shared by several processes. Shared 
resources such as read-only files do not  require mutually exclusive access and thus cannot 
lead to deadlocks. 

 

2. Hold and Wait 

 

To ensure that the hold-and-wait condition never occurs in the system, we must 
guarantee that, whenever a process requests a resource, it does not hold any other 
resources.  

One way used is each process must collect all the resources before it begins 
execution. Another way allows a process to request resources only when it has none. A 
process may request some resources and use them. Before it can request any additional 
resources, however, it must release all the resources that it is currently allocated. 



 

 

 

Both these methods have two main disadvantages.  

1. Resource utilization may be low, since resources may be allocated but unused for a 

long period. 

2. Starvation is possible. A process that needs several popular resources may have to 

wait indefinitely. 

 

 

 

3. No preemption 

 

If a process is holding some resources and requests another resource that cannot be 
immediately allocated to it then all resources the process is currently holding are preempted. 
The preempted resources are added to the list of resources for which the process is waiting. 
The process will be restarted only when it can regain its old resources in addition with the 
new ones that it is requesting. 

 

4. Circular wait 

 

One way to prevent the circular wait condition is by linear ordering of different types 
of resources. In this, the resources are divided into different classes. The following rules are 
used to prevent the possibility of circular wait. 

 

 Assign a unique integer number to each resource type. 

 Each process requests resources in an increasing order of enumeration. 

 

For Example, consider the following resources 

Tape drive = 1 

Disk drive = 5 

Printer = 12 

A process that wants to use the tape drive and printer at the same time must first 
request the tape drive and then request the printer. 

 

2.4.4 DEADLOCK AVOIDANCE 

 

Deadlock-prevention algorithms prevent deadlocks by limiting how requests can be 
made. An alternative method for avoiding deadlocks is to require additional information 
about how resources are to be requested. A deadlock-avoidance algorithm dynamically 
examines the resource-allocation state to ensure that a circular wait condition can never 
exist. The resource-allocation state is defined by the number of available and allocated 
resources and the maximum demands of the processes. 

 

2.4.4.1 SAFE STATE 

 

A safe state is a state in which the system can allocate resources to each process in 
some order and still avoid a deadlock.  A sequence of processes <P1, P2, ... , Pn>is a safe 
sequence for the current allocation state if, for each Pi, the resource requests that Pi can still 
make can be satisfied by the currently available resources plus the resources held by all Pj, 
with j <i. 



 

 

A safe state is not a deadlocked state. An unsafe state may lead to a deadlock. As 
long as the state is safe, the operating system can avoid deadlocked. In an unsafe state, the 
operating system cannot prevent processes from requesting resources in such a way that a 
deadlock occurs. 

 

Figure 2.13 Safe, unsafe, and deadlocked state spaces 

 

Let us we consider a system with 12 magnetic tape drives and 3 processes namely 
P0, P1and P2. The maximum needs, number of resources allocated and the current needs 
of each process are given in the table. 

 

 

At time t0, the system is in a safe state. The sequence <P1, P0, P2> satisfies the 
safety condition. Process P1 can immediately be allocated all its tape drives and then return 
them, then process Po can get all its tape drives and return them and finally process P2 can 
get all its tape drives and return them. The safe sequence is shown in the following table.  

 

 

Process 
Max 

Needs 

Initially 

Allocated 

Currently 

allocated 
Available 

No. of resources 

returned by 

processes after 

execution 

Total 

available 

P1 4 2 2 1 4 5 

P0 10 5 5 0 10 10 

P2 9 2 7 3 9 12 

 

2.4.4.2 RESOURCE - ALLOCATION GRAPH 

 

If we have only one instance of each resource type, then resource allocation graph is 
used for deadlock avoidance. The resource allocation graph normally contains the request 
and assignment edges. In addition to that, a new type of edge, called a claim edge is added. 
A claim edge Pi Rj indicates that process Pi may request resource Rj at some time in the 

Process Max Needs Allocated Current Needs Available 

P0 10 5 5 3 

 

P1 4 2 2 

P2 9 2 7 



 

 

future. The claim edge is shown by dotted lines. Figure 2.14 shows the deadlock avoidance 
with resource allocation graph. 

 

Figure 2.14 Resource allocation graph for deadlock avoidance 

 

When process Pi requests resource Rj, the claim edge Pi Rj is converted to a 
request edge. Similarly, when a resource Rj is released by Pi the assignment edge Rj Pi is 
reconverted to a claim edge Pi Rj.  

Cycle detection algorithm is used for detecting cycle in the graph. If no cycle exists, 
then the allocation of the resource will leave the system in a safe state. If a cycle is found, 
then the allocation will put the system in an unsafe state. 

2.4.4.3 BANKER’S ALGORITHM 

Resource allocation graph is not applicable for deadlock avoidance if we have 
several instance of each resource type. Banker’s algorithm is the best known deadlock 
avoidance strategies for several instances of resources. 

When a new process enters the system, it must declare the maximum number of 
instances of each resource type that it may need. This number may not exceed the total 
number of resources in the system. When a user requests a set of resources, the system 
must determine whether the allocation of these resources will leave the system in a safe 
state. If it will, the resources are allocated; otherwise, the process must wait until some other 
process releases enough resources. 

Several data structures must be maintained to implement the banker's algorithm. We 
need the following data structures, where n is the number of processes in the system and 
mis the number of resource types. 

 

 Available:  A vector of length m indicates the number of available resources of each 

type. 

 Max: An n x m matrix defines the maximum demand of each process. 

 Allocation: An n x m matrix defines the number of resources of each type currently 

allocated to each process. 

 Need: An n x m matrix indicates the remaining resource need of each process. 

 

2.4.4.3.1 Safety Algorithm 

 

Safety algorithm is used to find whether or not a system is in a safe state. This 
algorithm can be described as follows 

 



 

 

1. Let Work and Finish be vectors of length m and n, respectively. InitializeWork= 

Available and Finish[i] =false for i = 0, 1, ... ,n - 1. 

2. Find an I such that both 

a. Finish[i] ==false 

b. Needi<= Work 

If no such i exists, go to step 4. 
3. Work = Work + Allocationi 

Finish[i] = true 

Go to step 2. 

4. 4If Finish[i] ==true for all i, then the system is in a safe state 

2.4.4.3.2 Resource – Request Algorithm 

Next, we describe the algorithm for determining whether requests can be safely 
granted. Let Requesti be the request vector for process Pi. If Requesti [j] == k, then process 
Piwants k instances of resource type Ri. When a request for resources is made by process 
Pi, the following actions are taken:  

 

1. If Requesti<= Needi, go to step 2. Otherwise, raise an error condition, since the 

process has exceeded its maximum claim. 

2. If Requesti<=Available, go to step 3. Otherwise, Pi must wait, since the resources are 

not available. 

3. Have the system pretend to have allocated the requested resources to process Piby 

modifying the state as follows: 

Available= Available - Requesti 

Allocationi =Allocationi +Requesti 

Needi =Needi- Requesti 

If the resulting resource-allocation state is safe, the transaction is completed, and 
process Pi is allocated its resources. However, if the new state is unsafe, then Pi must wait 
for Requesti, and the old resource-allocation state is restored. 

2.4.5 DEADLOCK DETECTION AND RECOVERY 

2.4.5.1 DEADLOCK DETECTION 

 

If a system does not employ either a deadlock-prevention or a deadlock avoidance 
algorithm, then a deadlock situation may occur. The operating system periodically performs 
the deadlock detection algorithm to detect the deadlock. 

 

2.4.5.1.1 Single Instance of Each Resource Type 

 

If all resources have only a single instance, then a wait-for graph is used to detect the 
deadlock.  

An edge from Pi to Pj in a wait-for graph implies that process Pi is waiting for process 
Pj to release a resource that Pi needs. An edge PiPj exists in a wait-for graph if and only if 
the corresponding resource allocation graph contains two edges PiRq and RqPj for some 
resource Rq. 



 

 

 
 

Figure 2.15 Resource allocation graph with corresponding wait for graph 

 

If the wait-for graph contains a cycle, then there is a deadlock. To detect deadlocks, 
the system needs to maintain the wait-for graph and periodically invoke an algorithm that 
searches for a cycle in the graph. 

2.4.5.1.2 Several Instances of Resource Type 

 

The wait-for graph scheme is not applicable to a resource-allocation system with 
multiple instances of each resource type. The data structures used are 

 

 Available:  A vector of length m indicates the number of available resources of each 
type. 

 Allocation:  An n x m matrix defines the number of resources of each type currently 
allocated to each process. 

 Request: An n x m matrix indicates the current request of each process. 

 

1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work= 
Available. For i= 0, 1, ... ,n-1, if Allocationi <>0, then Finish[i] =false; otherwise, 
Finish[i] = true. 
 

2. Find an index i such that both 

a. Finish[i] ==false 

b. Requesti<=Work 

 If no such i exists, go to step 4. 

 
3. Work= Work+ Allocation i 

Finish[i] = true 

Go to step 2. 

 
4. If Finish[i] ==false for some i, 0<= i <n, then the system is in a deadlocked state. 

Moreover, if Finish[i] ==false, then process Pi is deadlocked. 

 

 

2.5.4.2 DEADLOCK RECOVERY 



 

 

Once deadlock has been detected, some strategy is needed for recovery. 

Process Termination:  

To eliminate deadlocks by aborting a process, we use one of two methods 

 Abort all deadlocked processes. This method clearly will break the deadlock 
cycle. 

 Abort one process at a time until the deadlock cycle is eliminated 

. 

Resource Preemption:  

To eliminate deadlocks using resource preemption, we successively preempt some 
resources from processes and give these resources to other processes until the deadlock 
cycle is broken. 

 

 Select a victim - which process and which resource to preempt. 

 Rollback to previously defined "safe" state. 

 Prevent one process from always being the one preempted(starvation).  

In general, it's easier to preempt the resource, than to terminate the process. 

 
 
 

    Summary 

 Process is an instance of program running on computer. 

 

 In Operating system,   system processes and user processes are the major 

categories of process. 

 The process has different states-New, Ready, Running, Waiting and Terminated 

states. 

 The thread is  a dispatchable unit of work within the process  

 The major difference between process and thread are  

S.No Process Thread 

1. Process is heavy weight Thread is light weight 

2. 

Process switching needs interaction 
with operating system. 

 

Thread switching does not need to 
interact with operating system 

3. 

In multiple processing environments, 
each process executes the same code 
but has its own memory and file 
resources. 

All threads can share same set of open 
files, child processes. 

4. 
If one process is blocked, then no 
other process can execute until the first 
process is unblocked. 

While one thread is blocked and 
waiting, a second thread in the same 
task can run. 

 

 The different types of threads are user level and kernel level threads 

 Process scheduling is the method of determining which process in the ready state 

should be moved to running state. 

 There are three types of schedulers-Long term,Short term and medium term 

 Different scheduling algorithms are present which are following the criteria---  CPU 

utilisation, throughput, turnaround time, waiting time and response time 



 

 

 The scheduling algorithms are first come first served, shortest job first scheduling, 

round robin scheduling, multiprocessor scheduling and gang scheduling. 

 The algorithms are evaluated by the following method--Deterministic model, 

Queueing model  and simulation 

 Inter process communication is a mechanism that allows the exchange of data 

between processes the two models are shared memory and message passing 

 Race condition is a situation where more than one processes access and manipulate 

shared data at a time then the result of the execution depends on the order in which 

the access takes place. 

 Mutual exclusive is  only one process can be in the critical section at a time, i.e if one 

process is executing in its critical section then other processes are not allowed to 

execute their critical section. 

 Semaphore is a hardware based solution used to solve critical section problem. 

 Deadlock is a situation if a waiting process is never again able to change state 

because the resources it has requested are held by other waiting processes. 

 Deadlocks can be prevented by preventing at least one of the four required 

conditions-Mutual Exclusion, hold and wait, No pre-emption and circular wait. 

 Deadlock avoidance can be done by safe state, Resource allocation graph, bankers 

Algorithm. 

 Deadlock Detection algorithm is done by operating system periodically – there are 

two types of algorithm –single instance of each resource type ,several instances of 

resource type 

 Deadlock recovery is done by process termination and resource pre-emption. 

 

 

REVIEW QUESTIONS 

PART - A 

1. Define Process. 

2. What is process control block?  

3. List the states of the process. 

4. Draw the structure of PCB. 

5. Define context switching. 

6. What is thread? 

7. List the types of threads. 

8. Write any two advantages of threads. 

9. Define Throughput. 

10. Define Turnaround time. 

11. What is the objective of scheduling? 

12. List the types of scheduler. 

13. Define CPU scheduler. 

14. Define swapping. 

15. What do you mean by preemptive and non-preemptive scheduling? 

16. What is multiprocessor scheduling? 

17. When gang scheduling is used? 

18. Define race condition. 

19. Define critical section. 

20. What is semaphore? 

21. Define deadlock. 

22. List the characteristics of deadlock. 



 

 

23. What is mutual exclusion   

24. What is a resource allocation graph? 

25. What is a wait for graph? 

PART – B 

1. What are the benefits of threads? 

2. Write short notes on user level threads. 

3. Write brief notes on the concept of multithreading. 

4. Differentiate process and threads. 

5. Write any three scheduling criteria. 

6. What is space scheduling? 

7. Explain the following transition between process states 

a. Running  Ready 

b. Running  Terminated 

c. Running  Waiting 

8. Briefly write about semaphore. 

9. Write about deadlock recovery. 

PART – C 

1. Explain process state transition with neat diagram. 

2. With neat sketch, write briefly about PCB. 

3. Explain the types of threads. 

4. Describe the various types of schedulers. 

5. Explain FCFS scheduling algorithm with an example. 

6. Explain non-preemptive SJF scheduling algorithm with an example. 

7. Explain preemptive SJF scheduling algorithm with an example. 

8. Explain round robin scheduling algorithm with an example. 

9. Explain various types of multiprocessor scheduling. 

10. Explain the various method for evaluating the performance of the      

scheduling algorithm 

11. What is shared memory? Explain it with an example 

12. Explain various message passing techniques. 

13. Explain critical section in detail. 

14. Describe the characteristics of deadlock. 

15. What are the methods to prevent a deadlock? Explain 

16. Explain how safe state is used to avoid deadlock with an example 

17. Explain any one deadlock avoidance strategy. 

18. Write the deadlock detection algorithm for several instances of 

resource  system. 

 

 



 

 

 

OBJECTIVES 

            After studying this unit, the student  should be able to: 

 Provide a detailed description of various ways of organizing memory hardware. 

 Understand the reason for memory partitioning and explain the various types that are 

used. 

 Understand and explain the concept of fragmentation and its types. 

 Understand and explain the concept of paging its advantages . 

 Summarize key security issues related to memory management. 

 Define virtual memory. 

 Describe the hardware and control structures that support virtual memory. 

 Describe the benefits of a virtual memory system. 

 Explain the concepts of demand paging, page-replacement algorithms. 

Introduction: 

Memory is a valuable system resource which must be carefully managed and shared 

between programs and processes . Also it should be protected against access by other 

programs. 

Memory management is the process of managing the computer memory which consist of 

primary memory or secondary memory. In this, we allocate the memory portions to programs 

and softwares after freeing the space of the computer memory. Basically, memory 

management is of critical importance for operating system because the multi-tasking can 

take place in the system which switches the memory space from one process to another. 

Moreover, the concept of the virtual memory is used in the system according to which 

programs from main memory are loaded to the secondary memory when the space is not 

large enough to hold the programs.  

. 3.1 Basic Memory Management 

3.1.1  Definition  

             The main memory is central to the operation of a modern computer system. It 

consists of  large array of words or bytes. Memory management is a process of  operating 

system which manages primary memory and moves processes between main memory and 

disk during execution. The CPU fetches instructions from memory according to the value of 

the program counter.  Both instructions and the data must be brought to the  main memory 

during  execution. If the data are not in memory, they must be moved there before the CPU 

can  operate  on them . 

 

             Memory management keeps track of each and every memory location, regardless of 

either it is allocated to some process or it is free. It checks how much memory is to be 

allocated to processes. It tracks whenever some memory gets freed or unallocated and 

correspondingly it updates the status. 

                                   UNIT – III        

                     MEMORY MANAGEMENT  



 

 

The main functions of memory management are: 

 Keeps track of the status of each memory location, either allocated or free. 

 Determines how memory is allocated among  processes. 

 Decides  which process will get memory at what time . 

 Determines which memory locations will be assigned.  

 Keeps  track of when memory is freed or unallocated and updates the status. 

 

3.1.1.2   Types of  memory  :  

Basically  computer memory is classified as  

 Primary Memory (Main Memory) 

 Secondary Memory (Auxillary Memory) 

Primary Memory (Main Memory) 

            Primary memory holds only those data and instructions on which computer is 

currently working. It has limited capacity and data is lost when power is switched off.  

Hence it is volatile. It is generally made up of semiconductor device. The data and instruction 

required to be processed reside in main memory. It is divided into two subcategories :  RAM 

and ROM. 

 

Secondary Memory (Auxiliary Memory) 

          This type of memory is also known as external memory or non-volatile. It is slower 

than main memory. It is used for storing data/Information permanently. CPU directly 

does not access these memories instead they are accessed via input-output routines. 

Contents of secondary memories are first transferred to main memory, and then CPU can 

access it. For example : disk, CD-ROM, DVD etc. 

 

3.1.2  Logical & Physical Address Map 

                Logical address otherwise called as Virtual address  is an address used by 

software which is generated by the CPU. It is also referred to as virtual address. During 

execution of the program, the CPU requests the needed data from main memory using 

logical address. 

 

               Physical address actual memory address which denotes a memory area in the  

storage device is the one that is loaded into the memory address register of the memory. 

Physical memory may be mapped to different logical addresses for various purposes. 

 

              The process of  converting logical (virtual) address into physical address at run time 

is called memory mapping. This run-time mapping  is done by a hardware device called the 

memory-management unit (MMU).  

The MMU has two special registers that are accessed by the CPU’s control unit. A data to be 

sent to main memory or retrieved from memory is stored in the Memory Data 

Register (MDR). The desired logical memory address is stored in the Memory Address 

Register (MAR). The address translation is also called address binding and uses a memory 



 

 

map that is programmed by the operating system. Before memory addresses are loaded on 

to the system bus, they are translated to physical addresses by the MMU. 

             

             Fig  3.1   Memory Management Unit ( MMU) 

In compile-time and load-time address-binding schemes of logical and physical addresses 

are same , whereas in execution-time the address-binding schemes will differ.  

 

The set of all logical addresses (generated by a program) is referred to as Logical address 

space. The set of all Physical addresses corresponding to these logical addresses is 

referred  to as physical address space. 

 

For example, P2 is a user program, with size 256 KB. But program is loaded in the main 

memory from 13000 to 13256 KB; this address is called physical address. The user program 

deals with logical addresses. 

The value in the relocation register is added to every address generated by a user process 

and it is then sent to memory. Mapping is done as follows:  

Physical address space = Logical address space + relocation register value 

ie., 13256 = 256 + 13000 

                  

                                         Fig  3.2  Memory Mapping 

 

3.1.3  Memory Allocation 



 

 

                    Memory allocation is a process by which computer programs and services 

are assigned with physical or virtual memory space. It is  the process of reserving a 

partial or complete portion of computer memory for the execution of programs and 

processes. Programs and services are assigned with a specific memory as per their 

requirements when they are executed. Once the program has finished its operation or is idle, 

the memory is released and allocated to another program or merged within the primary 

memory. 

 

Memory allocation methods: 

 Contiguous allocation 

 Fixed partition allocation 

 Variable partition allocation 

 

3.1.3.1  Contiguous allocation : 

 

Contiguous memory allocation is  a  method  that assigns a user process  in memory blocks  

having consecutive addresses. 

The main memory is usually divided into two partitions: one for the resident operating system 

and one for the user processes.  

 Low Memory − Operating system resides in this memory. 

 High Memory − User processes are held in high memory. 

        

Fig 3.3  Contiguous memory allocation 

              In contiguous memory allocation, each process is contained in a single contiguous 

section of memory. In this type of allocation, relocation-register scheme is used to protect 

user processes from each other, and from changing operating-system code and data. 

Relocation register contains value of smallest physical address  whereas limit register 

contains range of logical addresses. With relocation and limit registers, each logical address 

must be less than the limit register; the MMU maps the logical address dynamically by 

adding the value in the relocation register. This mapped address is sent to memory. This is 

depicted in the  following diagram. 

Hardware Support for Relocation and Limit Registers 



 

 

 

Fig 3.4  Protection using Relocation & limit registers 

Advantages 

 It is simple. 

 It is easy to understand and use. 

Disadvantages 

 It leads to poor utilization of processor and memory. 

 User process is limited to the size of available memory 

3.1.3.2   Fixed and variable partition  

3.1.3.2.1FixedpartitionAllocation 

 

            One of the simplest methods for allocating memory is to divide memory into several 

fixed sized, non overlapping partitions.  This method divides the main memory into equal 

number of fixed sized partitions, operating system occupies some fixed portion and 

remaining portion of main memory is available for user processes. Any process whose size 

is less than or equal to a partition size can be loaded into the partition. If all partitions are 

occupied, the operating system can swap a process out of a partition. If a program is too 

large to fit in a partition, then the programmer must redesign the program . 

 

      In this method, the main memory use is inefficient. Any program, no matter how 

small, occupies an entire partition. The left over space in partition, after program 

assignment, is called internal fragmentation.Unequal-size partitions will decrease these 

problems. Equal-size partitions was used in early IBMs OS/MFT (Multiprogramming with a 

Fixed number of Tasks) 



 

 

 

Fig 3.5 Fixed Partition - Example 

Advantages 

            1.  Any process whose size is less than or equal to the partition size can be loaded                            

                 into any available partition. 

               2 . It supports multiprogramming. 

Disadvantages 

         1.If a program is too big to fit into a partition use overlay technique. 

         2, Memory use is inefficient, i.e., block of data loaded into memory may   be      

            smaller than the partition. It is known as internal fragmentation. 

    3.1.3.2.2   Variable Size Partitions 

                      In this type of allocation, main memory is divided into a number of fixed-sized 

partitions where each partition should contain only one process. When a partition is free, a 

process is selected from the input queue and is loaded into the free partition. When the 

process terminates, the partition becomes available for another process. 

                      Each partition may contain exactly one process. In this multiple-partition 

method,  when a partition is free, a process is selected from the input queue and is loaded 

into the  free partition. When the process terminates, the partition becomes available for 

another  process.  The operating system keeps a table indicating which parts of memory are 

available and which are occupied. Finally, when a process arrives and needs memory, a 

memory section large enough for this process is provided. 

 

                          By using  variable size partitions, we can overcome the disadvantages 

present in fixed    size partitioning. This is shown in the figure below: 

 



 

 

 

Fig 3.6 Variable Partition - Example 

   3.1.4  Internal ,External Fragmentation & Compaction 

         Fragmentation occurs  in  memory allocation system when many of the free blocks 

are too small to satisfy any request.              

As processes are loaded and removed from memory, the free memory space is broken into 

little pieces. It happens after sometimes that processes cannot be allocated to memory 

blocks considering their small size and memory blocks remains unused. This problem is 

known as Fragmentation. 

         Fragmentation is of two types:        1. Internal fragmentation  

                      2. External fragmentation 

 

3.1.4.1 Internal   &  External fragmentation: 

 

Internal Fragmentation:  

           Internal fragmentation is the space wasted inside of allocated memory blocks 

because of restriction on the allowed sizes of allocated blocks. Allocated memory may be 

slightly larger than requested memory; this size difference is memory internal to a partition, 

but not being used. Internal fragmentation occurs when memory allocation is based on fixed-

size partitions where after a small size application is assigned to a slot and the remaining 

free space of that slot is wasted. Internal fragmentation occurs when more storage is 

allocated than is actually requested. This left over space, known as slack space, causes a 

degradation of system performance 

http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail


 

 

                              

                                     Fig  3.7    Internal Fragmentation 

 

 

Example:  Internal Fragmentation 

    

                                                  Main Memory                 

                                                                               

We have 285 k memory available, but we can not fix p6  process, due to Internal  

fragmentation. 

 

External Fragmentation:  

          

          External Fragmentation happens when a dynamic memory allocation algorithm 

allocates some memory and a small piece is left over that cannot be effectively used. If too 

much external fragmentation occurs, the amount of usable memory is drastically reduced. 

Total memory space is enough to satisfy a request or to reside a process in it, but it is not 

contiguous so it can not be used. For   example, this can cause problems when an 

application requests a block of memory of 1000bytes, but the largest contiguous block of 

memory is only 300bytes. Even if ten blocks of 300 bytes are found, the allocation request 

will fail because  they are not contiguous.   



 

 

 

Fig: 3.8    External  fragmentation     

 

 

Example : External Fragmentation 

      

                                                                                          Main Memory 

 

We have 560k of available memory but we cannot  fix P5 process, due to External 

fragmentation. 

 

Difference between Internal and External Fragmentation: 

 

 

Internal Fragmentation External Fragmentation 

It is found in Fixed partition scheme. It is found in variable  partition scheme. 

This can be reduced using External 

Fragmentation. However this solution suffer 

from external fragmentation. 

This can be solved using compaction where 

all the empty spaces are combined together. 



 

 

.  

Fig   3.9  showing the difference between Internal and External Fragmentation 

 

3.1.4.2  Compaction:   

              Memory compaction is the process of moving allocated objects together, and 

leaving empty space together. Swapping creates multiple fragments in the memory 

because of the processes moving in and out. Memory compaction refers to combining all the 

empty spaces together and then combining all the processes together. The disadvantage of 

memory compaction is that it requires too much of CPU time. 

The following diagram shows how fragmentation can cause waste of memory and a 

compaction technique can be used to create more free memory out of fragmented memory  

 

                                               Fig  3.10   Compaction  

External fragmentation can be reduced by compaction or shuffle memory contents to place 

all free memory together in one large block. To make compaction feasible, relocation should 

be dynamic. 

 



 

 

3.1.5. Paging 

3.1.5.1 Basic principle 

A computer can address more memory than the amount physically installed on the system. 

This extra memory is actually called virtual memory. 

Paging technique plays an important role in implementing virtual memory. 

Paging is a memory management technique in which process (logical) address space  

is broken into blocks of the same size called pages (size is power of 2, between 512 

bytes and 8192 bytes). The size of the process is measured in the number of pages. 

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory called 

frames      (size is power of 2, between 512 bytes and 8192 bytes).  and the size of a frame 

is kept the same as that of a page to have optimum utilization of the main memory and to 

avoid external fragmentation 

3.1.6.2  Address Translation 

Page address is called logical address and represented by page number and the offset. 

Logical Address = Page number + page offset 

Frame address is called physical address and represented by a frame number and the 

offset. 

Physical Address = Frame number + page offset 

A data structure called page map table is used to keep track of the relation between a page 

of a process to a frame in physical memory. 

  

Fig  3.11   Page Map Table 



 

 

When the system allocates a frame to any page, it translates this logical address into a 

physical address and create entry into the page table to be used throughout execution of the 

program. 

When a process is to be executed, its corresponding pages are loaded into any available 

memory frames. Suppose you have a program of 8Kb but your memory can accommodate 

only 5Kb at a given point in time, then the paging concept will come into picture. When a 

computer runs out of RAM, the operating system (OS) will move idle or unwanted pages of 

memory to secondary memory to free up RAM for other processes and brings them back 

when needed by the program. 

This process continues during the whole execution of the program where the OS keeps 

removing idle pages from the main memory and write them onto the secondary memory and 

bring them back when required by the program. 

Address Translation Architecture 

                   

Fig. 3.11 Address translation in Paging 

Every address generated by the CPU is divided into two parts: a page number (p) and a 

page offset (d). The page number is used as an index into a page table. The page table 

contains the base address of each page in physical memory. This base address is combined 

with the page offset to define the physical memory address that is sent to the memory unit.  

Page address is called logical address and represented by page number and the offset. 

Logical Address = Page number + page offset 



 

 

Frame address is called physical address and represented by a frame number and the 

offset. 

Physical Address = Frame number + page offset 

A data structure called page map table is used to keep track of the relation between a page 

of a process to a frame in physical memory. 

 

The paging model of memory is shown below. 

 

Paging Example 1: 

 

The page size (like the frame size) is defined by the hardware. The size of a page is typically 

a power of 2, varying between 512 bytes and 16 MB per page, depending on the computer 

architecture. The selection of a power of  2 as a page size makes the translation of a logical 

address into a page number  and page offset particularly easy. If the size of logical address 

space is 2m and a page size is 2n addressing units (bytes or words), then the high-order m – 



 

 

n bits of a logical address designate the page number, and the n low-order bits designate the 

page offset. 

Address generated by CPU  (logical address ) is divided into: 

   1.  Page number (p) – used as an index into a page table which contains base 

address of each page    in physical memory. 

   2.  Page offset     (d) – combined with base address to define the physical 

memory address that is  sent to the memory unit. 

                               

         where p is an index into the page table and d is the displacement within the page. 

Fig 3.13 Logical address 

 

Paging Example 2: 

 

Assume a page size of 1K  and a 15-bit logical address space. Given   : Size of logical 

address = 2 ^ 15 = 32788 ( m=15) 

 

No. of  bits  required to address each byte within a 1024-byte page =  10 bits  (n=10,  2^10 = 

1024). 

Given   : Size of logical address = 2 ^ 15 = 32788   so,  m=15  & n = 10 

 

   This leaves 5 bits for page number. (m-n) 

So, No. of  pages are in the system = 32 pages of  1K each  (Since 2^5 = 32) 

 

Page number (p) = m-n = 5 bits; 

page offset    (d)  = 10 bits 

 

Assuming a 15-bit address space with 8 logical pages. How large are the pages? 

 

Answer: 2^12 = 4K. It takes 3 bits to reference 8 logical pages (2^3 = 8). 

 This leaves 12 bits for the page size and thus pages are 2^12.  

   

     Consider logical address 2049 and the following page table for some process P0.  

       Assume a 15-bit address space with a page size of 1K.  

 

              What is the physical address to which logical address 2049 will be mapped? 

  

          Solution : 



 

 

 

                        Logical Pages 

                                            

                                                                 

                                                                  

 

 

Step 1. Convert logical address to binary:  

   

 

 Logical address:       2049                          000100000000001 

 

 

Step2. Determine the logical page number:  

    

        Since there are 5-bits allocated to the logical page, the address is broken up as follows: 

                                   00010                       0000000001 

                     Logical page number                     offset within page 

 

Step 3. Use logical page number as an index into the page table to get physical page 

number.  

 

                                               Logical Address: 

   4 

    0 

    1 

    3 

    2 



 

 

                                            

                                           00010  0000000001 

 

 

 

Step 4. Concatenate offset with physical page frame number 

 

 

                                              Logical Address 

                                          00010  0000000001 

 

 

                                  

 

 

 

 

 

 

Step 5:       

Logical  address                                                                 Physical address 

 

        00010 
        00011 0000000001 



 

 

                                                       

 

 

                                                   000110000000001 = 3073 

Logical address 2049   is mapped to     ---------------  >        physical address 3073 

  

3.1.6.3  Hardware support for paging: 

The additional hardwares used in paging are : 

 

i) Page table  

ii) Translation look-aside buffers (TLB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

iii) Page table is kept in main memory. 

                 iv)  Page-table base register (PTBR) points to the page table. 

                 v)  Page-table length register (PRLR) indicates size of the page table. 

The diagram below shows the Hardware support for Paging Hardware With TLB. 

0 

1 

2 

3 

4 

0 

1024
24 

4096 

3072 

2048 



 

 

                       

Fig 3.14 Paging using TLB 

In this scheme every data/instruction access requires two memory accesses. One for the 

page table and one for the data/instruction. The two memory access problem can be solved 

by the use of a special fast-lookup hardware cache called associative memory or translation 

look-aside buffers (TLBs)    

Working:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

 If the page number is not in the TLB (TLB miss) a memory reference to the 
page table must be made.  

 In addition, we add the page number and frame number into TLB 
 If the TLB already full, the OS have to must select one for replacement 
 Some TLBs allow entries to be wire down, meaning that they cannot be 

removed from the TLB, for example kernel codes 
 The percentage of times that a particular page number is found in the TLN is 

called hit ratio 
 If it takes 20 nanosecond to search the TLB and 100 nanosecond to access 

memory 
 If our hit ratio is 80%, the effective memory access time equal to: 
      0.8*(100+20) + 0.2 *(100+100)=140 
 If our hit ratio is 98%, the effective memory access time equal: 
      0.98*(100+20) + 0.02 *(100+100)=122 

 

 



 

 

3.1.6.4   Protection  and  sharing  

Paging hardware typically also contains  protection mechanism  by associating protection 

bit  ( or valid/invalid bit ) with each frame. Valid-invalid  bit attached to each entry in the 

page table: 

      1. “valid -v” indicates that the associated page is in the process’  logical address    

          space, and is thus a  legal page. 

 

       2. “invalid – i ” indicates that the page is not in the process’ logical  address   

          space. 

  3. Sharing code and data takes place if two page table entries in different processes     

point to same physical page, the processes share the memory. If one process writes the 

data, other process will see the changes. It is a very efficient way to communicate. 

  4. Sharing must also be controlled to protect modification and accessing data in one 

process by another process. Programs using  procedures and data that are non-

modifiable can be shared. 

 

Fig 3.15     Valid (v) or Invalid (i) Bit  in a Page Table 

 



 

 

3.1.6.5 Advantages and Disadvantages of Paging 

Advantages 

 reduces external fragmentation, but still suffer from internal fragmentation. 

 simple to implement and assumed as an efficient memory management technique. 

 Due to equal size of the pages and frames, swapping becomes very easy. 

Disadvantages 

 extra resource consumption,  

 memory overhead for storing page tables.  

 translation overhead. 

3.2 Virtual Memory  
Introduction  
                          The goal of various memory management techniques is to keep many 

processes in memory simultaneously to allow multiprogramming. However, they tend to 

require that an entire process be in memory before it can execute. 

                     Virtual memory is a technique that allows the execution of processes that are 

not completely in memory. One major advantage of this scheme is that programs can be 

larger than physical memory. Further, virtual memory abstracts main memory into an 

extremely large, uniform array of storage, separating logical memory as viewed by the user 

from physical memory. This technique frees programmers from the concerns of memory-

storage limitations. Virtual memory also allows processes to share files easily and to 

implement shared memory. In addition, it provides an efficient mechanism for process 

creation. 

 

3.2.1 Basics of Virtual memory  

 

                         A computer can address more memory than the amount physically installed 

on the system. This extra memory is actually called virtual memory and it is a section of a 

hard disk that's set up to emulate the computer's RAM. Virtual memory is a memory 

management capability of an OS that uses hardware and software to allow a computer to 

compensate for physical memory shortages by temporarily transferring data from random 

access memory (RAM) to disk storage. Virtual Memory is a space where large programs 

can store themselves in form of pages while their execution and only the required pages or 

portions of processes are loaded into the main memory. Thus we can have large virtual  

memory on a small physical memory. 

 

 

Table 3.1 Virtual Memory Terminology 



 

 

Virtual address              :    The address assigned to a location in virtual memory to 

allow   that location to be accessed as though it were part of main  memory. 

Virtual address space    :    The virtual storage assigned to a process.  

Address space               :    The range of memory addresses available to a process. 

Physical  address          :    The address of a storage location in main memory.  

 
Fig. 3.16 Virtual memory Terminologies 

                                

 
Fig .  3.17 Virtual Memory 

 

Benefits of having Virtual Memory : 

 

1. Programs can be larger than physical memory since virtual memory allows us to 

extend the use of physical memory by using disk.  



 

 

2. It allows us to have memory protection, because each virtual address is translated to 

a physical    address.  
3.   Less I/O required, leads to faster and easy swapping of processes. 

      4.   Higher degree of multiprogramming is possible since only portions of programs are in       

            memory  

3.2.2  Hardware  and  Control  Structures : 

Locality of Reference :  
                  Many applications continually reference large amounts of data. Whenever the 

data are to be linked like  primary or secondary memory references, database queries , 

the process become slow and this  leads to poor performance in the application. 

                 A common solution to such applications is Locality of Reference. This principle 

observes that an application does not access all of its data at once with equal 

probability. Instead, it accesses only a small portion of it at any given time. An 

application can exhibit temporal and/or spatial locality. If some data is referenced, then 

there is a high probability that it will be referenced again in the near future. This is called 

temporal locality. If some data is referenced, then there is a high probability that data 

nearby will be referenced in the near future. This is called spatial locality. 

 

                 The O.S  keeps more often used data in main memory, and everything else in 

secondary memory. Because of the principle of  Locality of Reference, we can be sure 

that most memory references will be to locations already stored in main memory, 

thereby improving efficiency and providing a flat memory model. This scheme is used in 

modern operating systems and is called virtual memory. Virtual memory gives users the 

appearance of unlimited primary memory by transparently utilizing secondary memory. 

 Hardware  and  Control  Structures : 
                 The Virtual  memory manager  ( VMM ) maintains the following data structures 
to manage the virtual memory. 

1. Page : Each program is divided into equal  sized  partitions called pages. It is a 

unit of transfer from program to memory and back. Each page is assigned a 

unique page number. 

2. Page frame : The main memory is divided into equal  sized partitions called page 

frames.  Each partition is of the same size as a page of the program so that a 

page from the program can be accommodated  in a page frame of the main 

memory. Each frame is assigned a unique page frame number. The VMM 

allocates page frames to incoming pages of the program. 

3.   Page table base register (PTBR) :  This holds the base address for the page 

table of the current process. Each  process running on a processor needs its own 

logical address space. Each process has its own  page table. The operating system 

maintains information about each process in a process control block.The page table 

base address for the process is stored there. The operating system loads this address 

into the PTBR whenever a process is dispatched. 

 

4. Page Table : Each running program, plus the data structures needed to manage 

it, is called a process. For every active process, the O.S assigns a page table. 

This table is used for recording the information about the page frames allocation to 



 

 

the various pages brought in from the hard disk. and is  used by a virtual memory 

system map between physical frames and virtual pages. Each page table entry 

contains information about a single page. The most important part of this 

information is a frame number — where the page is located in physical memory. 

                      A page table consists of : 

                   Page no :     Number of the page brought in from the hard disk. 

                   Frame no.:   Number of the page frame allotted from the main memory. 

                  Valid bit (v): A valid bit (v) tells if the page is currently in main memory or if it            

                                         must be retrieved from virtual memory. If the page is in main   

                                         memory v is set to 1. When a page is taken from disc and put back   

                                         into main  memory, v is set to 0 and  then it  indicates  a page fault. 

                  Dirty Bit or Modified Bit (m) : . A Dirty or modifed bit (m) tells if a page has     

                                        been written to while  in main memory. If it  hasn't been modified, m    

                                        is set to 1. If it hasn't been modified, and a copy of it is in virtual      

                                        memory, it doesn't need to be  written to disc,hence the system    

                                        speeds up. If it has modified, m is set to 0 and the page must be   

                                        written to virtual memory. 

 

5. Working set :  This is the set of pages of  the program which are currently active 

in the main memory.  A process  will never be executed unless its working set is 

resident in main memory. Pages outside the working set may be discarded at any 

time. The working set contains only pageable memory allocations; When a 

process references pageable memory that is not currently in its working set, a 

page fault occurs. The system page fault handler attempts to resolve the page 

fault and, if it succeeds, the page is added to the working set.  

 
 

Fig. 3.18   Page  Table Entries (PTE’s) in Virtual memory 

Page fault : An interrupt that occurs when a program requests data that is not currently in 
real memory. The interrupt triggers the operating system to fetch the data from a virtual 
memory and load it into RAM.  

An invalid page fault or page fault error occurs when the operating system cannot find the 

data in virtual memory. This usually happens when the virtual memory area, or the table that 

maps virtual addresses to real addresses, becomes corrupt.  

http://www.webopedia.com/TERM/I/interrupt.html
http://www.webopedia.com/TERM/P/program.html
http://www.webopedia.com/TERM/O/operating_system.html
http://www.webopedia.com/TERM/V/virtual_memory.html
http://www.webopedia.com/TERM/V/virtual_memory.html
http://www.webopedia.com/TERM/R/RAM.html
http://www.webopedia.com/TERM/I/invalid_page_fault.html
http://www.webopedia.com/TERM/V/virtual_memory.html


 

 

Principle  of  Working of  Virtual Memory : Address Translation 

using Paging: 

When the page is needed, the operating system copies it from disk to main memory, 
translating the virtual addresses into real addresses. The process of translating virtual 
addresses into real addresses is called mapping. The copying of virtual pages from disk to 
main memory is known as paging or swapping. 

Virtual memory address translation uses page tables. These are simple arrays in memory 
indexed by page number. Address translation combines the frame number with the offset 
part of a logical address to form a physical address.The addresses that appear in programs 
are the virtual addresses or program addresses. For every memory access, either to fetch 
an instruction or data, the CPU must translate the virtual address to a real physical address. 
A virtual memory address can be considered to be composed of two parts: a page number 
and an offset into the page. The page number determines which page contains the 
information and the offset specifies which byte within the page. The size of the offset field is 
the log base 2 of the size of a page. 

Consider an example system with: 

16MB Maximum Virtual Address space (24 bits)   ;  8MB Maximum Physical Address space 

(23 bits)  ; 1024byte Page size (10 bits) 

 The virtual addresses can be represented as 

13 bits 10 bits 

page number offset 

To convert a virtual address into a physical address, the CPU uses the page number as an 

index into the page table. If the page is resident, the physical frame address in the page 

table is concatenated in front of the offset to create the physical address.  

 

Fig. 3.19     Address Translation in a Paging System 



 

 

 3.2.3 Demand Paging 

            In virtual memory systems, demand paging is a type of swapping in which pages of 
data are not copied from disk to RAM until they are needed. A demand paging system is  a 
paging system with swapping where processes reside in secondary memory and 
pages are loaded only on demand, not in advance. When a context switch occurs, the 
operating system does not copy any of the old program’s pages out to the disk or any of the 
new program’s pages into the main memory Instead, it just begins executing the new 
program after loading the first page and fetches that program’s pages as they are 
referenced. 

 

Fig 3.20   Demand Paging 

While executing a program, if the program references a page which is not available in the 
main memory because it was swapped out a little ago, the processor treats this invalid 
memory reference as a page fault and transfers control from the program to the operating 
system to demand the page back into the memory. 

Advantages 

Following are the advantages of Demand Paging − 

 Large virtual memory. 
 More efficient use of memory. 
 There is no limit on degree of multiprogramming. 

Disadvantages 

 Number of tables and the amount of processor overhead for handling page interrupts 
are greater than in the case of the simple paged management techniques. 

3.2.4 Page Replacement Algorithms 

http://www.webopedia.com/TERM/V/virtual_memory.html
http://www.webopedia.com/TERM/S/system.html
http://www.webopedia.com/TERM/S/swap.html
http://www.webopedia.com/TERM/P/page.html
http://www.webopedia.com/TERM/D/data.html
http://www.webopedia.com/TERM/C/copy.html
http://www.webopedia.com/TERM/D/disk.html
http://www.webopedia.com/TERM/R/RAM.html


 

 

In a computer operating system that uses paging for virtual memory management, page 
replacement algorithms are techniques that decide which memory pages to page out (swap 
out, write to disk) when a page of memory needs to be allocated. 

Paging happens whenever a page fault occurs and a free page cannot be used for allocation 
purpose accounting to reason that pages are not available or the number of free pages is 
lower than required pages. 

When the page that was selected for replacement and was paged out, is referenced again, it 
has to read in from disk, and this requires for I/O completion. This process determines the 
quality of the page replacement algorithm: the lesser the time waiting for page-ins, the better 
is the algorithm. 

A page replacement algorithm looks at the limited information about accessing the pages 
provided by hardware, and tries to select which pages should be replaced to minimize the 
total number of page misses, while balancing it with the costs of primary storage and 
processor time of the algorithm itself. There are many different page replacement algorithms. 
We evaluate an algorithm by running it on a particular string of memory reference and 
computing the number of page faults, 

Reference String 

The string of memory references is called reference string. Reference strings are generated 
artificially or by tracing a given system and recording the address of each memory reference. 
The latter choice produces a large number of data, where we note two things. 

 For a given page size, we need to consider only the page number, not the entire 

address. 

 If we have a reference to a page p, then any immediately following references to 

page p will never cause a page fault. Page p will be in memory after the first 

reference; the immediately following references will not fault. 

 For example, consider the following sequence of addresses − 

123,215,600,1234,76,96 

 If page size is 100, then the reference string is 1,2,6,12,0,0 

3.2.4.1  First In First Out (FIFO) algorithm 

 Oldest page in main memory is the one which will be selected for replacement. 

 Easy to implement, keep a list, replace pages from the tail and add new pages at the 

head. 

 

3.2.4.2  Optimal Page algorithm 



 

 

 An optimal page-replacement algorithm has the lowest page-fault rate of all 

algorithms. An optimal page-replacement algorithm exists, and has been called OPT 

or MIN. 

 Replace the page that will not be used for the longest period of time. Use the time 

when a page is to be used. 

 

3.2.4.3 NRU(Not Recently Used) Page Replacement Algorithm -  

              This algorithm requires that each page have two additional status bits 'R' and 

'M' called reference bit and change bit respectively. The reference bit(R) is automatically 

set to 1 whenever the page is referenced. The change bit (M) is set to 1 whenever the 

page is modified. These bits are stored in the PMT and are updated on every memory 

reference. When a page fault occurs, the memory manager inspects all the pages and 

divides them into 4 classes based on R and M bits. 

 Class 1: (0,0) − neither recently used nor modified - the best page to replace. 

 Class 2: (0,1) − not recently used but modified - the page will need to be written out 

before replacement. 

 Class 3: (1,0) − recently used but clean - probably will be used again soon. 

 Class 4: (1,1) − recently used and modified - probably will be used again, and write 

out will be needed before replacing it. 

This algorithm removes a page at random from the lowest numbered non-empty class. The 
main attraction of NRU is that it is easy to understand, moderately efficient to implement. 

3.2.4.4  The Second Chance Page Replacement  

 The Second Chance replacement policy is called the Clock replacement policy...  

 In the Second Chance page replacement policy, the  pages for removal are consider 

in a round robin matter, and a page that has been accessed between consecutive 

considerations will not be replaced.  

 Implementation:  

o Add a "second chance" bit to each memory frame.  

o Each time a memory frame is referenced, set the "second chance" bit to ONE 

(1) - this will give the frame a second chance...  

o A new page read into a memory frame has the second chance bit set to 

ZERO (0)  



 

 

o When you need to find a page for removal, look in a round robin manner in 

the memory frames:  

 If the second chance bit is ONE, reset its second chance bit (to 

ZERO) and continue.  

 If the second chance bit is ZERO, replace the page in that memory 

frame.  

 The following figure shows the behaviour of the program in paging using the Second 

Chance page replacement policy:  

 

3.2.4.5  Least Recently Used (LRU) algorithm 

 Page which has not been used for the longest time in main memory is the one which 

will be selected for replacement. 

 Easy to implement, keep a list, replace pages by looking back into time. 

 This algorithm suffers from the situation in which a page is used heavily during the 
initial phase of a process, but then is never used again. 

 

 

 

 



 

 

Summary 

 

 Memory management is the process of managing the computer memory which 

consist of primary memory or secondary memory. 

 Basically  computer memory is classified as Primary Memory (Main 

Memory),Secondary Memory (Auxillary Memory) 

 Primary memory holds only those data and instructions on which computer is 

currently working. 

 Secondary memory is used for storing data/Information permanently. 

 The process of  converting logical (virtual) address into physical address at run time 

is called memory mapping. 

 

 Logical address otherwise called as Virtual address  is an address used by software 

which is generated by the CPU 

 Physical address actual memory address which denotes a memory area in the  

storage device. 

 Memory allocation is a process by which computer programs and services are 

assigned with physical or virtual memory space 

 Memory allocation methods: Contiguous allocation,Fixed partition allocation,Variable 

partition allocation 

 Fragmentation is called when  as  processes are loaded and removed from memory, 

the free memory space is broken into little pieces which will not be able to use. 

 Fragmentation is of two types---. Internal fragmentation , External fragmentation 

 Internal fragmentation is the space wasted inside of allocated memory blocks 

because of restriction on the allowed sizes of allocated blocks 

 External Fragmentation happens when a dynamic memory allocation algorithm 

allocates some memory and a small piece is left over that cannot be effectively used. 

 Memory compaction is the process of moving allocated objects together, and leaving 

empty space together to avoid fragmentation. 

 Paging is a memory management technique in which process (logical) address 

space  is broken into blocks of the same size called pages (size is power of 2, 

between 512 bytes and 8192 bytes.) 

 A data structure called page map table is used to keep track of the relation between 

a page of a process to a frame in physical memory. 

 The additional hardwares used in paging are :Page table ,Translation look-aside 

buffers (TLB) ,  Page table is kept in main memory, Page-table base register (PTBR) 

points to the page table. Page-table length register (PRLR) indicates size of the page 

table. 

 Virtual memory is a memory management capability of an OS that uses hardware 

and software to allow a computer to compensate for physical memory shortages by 

temporarily transferring data from random access memory (RAM) to disk storage 

 When the page is needed, the operating system copies it from disk to main memory, 

translating the virtual addresses into real addresses. The process of translating 

virtual addresses into real addresses is called mapping. The copying of virtual pages 

from disk to main memory is known as paging or swapping. 

 A demand paging system is  a paging system with swapping where processes reside 

in secondary memory and pages are loaded only on demand, not in advance 



 

 

 page replacement algorithms are techniques that decide which memory pages to 

page out (swap out, write to disk) when a page of memory needs to be allocated. 

 The different algorithms are --First In First Out (FIFO) algorithm, Optimal Page 

algorithm, NRU(Not Recently Used) Page Replacement Algorithm , The Second 

Chance Page Replacement , Least Recently Used (LRU) algorithm  

 

 

REVIEW QUESTIONS 

 

                                        PART A (2 Marks) 

1. What are the main tasks of  Memory management. 

 2. List the two types of memory available in a computer system. 

 3. Define : Physical address. 

 4. Define : Logical address. 

 5. What are the features of  Main memory? 

 6. What is a secondary memory? 

 7. What is the use of memory mapping hardware? 

 8. What do you mean by memory allocation? 

 9. What is Internal fragmentation? 

10. what is External fragmentation? 

11. What is Memory compaction? 

12. What is Paging? 

13. Define address translation? 

14. What is protection? 

15. Define Virtual memory? 

16. What is Demand paging? 

17. What is  the use of dirty bit? 

18. What is Working set? 

19. Define Page fault. 

20. What is Page replacement? 

 

  

 

                             PART B (3 Marks) 

1. Explain Logical and physical address mapping. 

2. Draw the structure of contiguous memory allocation. 

3. Give the merits and demerits of variable partitioned allocation in memory. 

4. What  is basic concept of paging? 

5. What are the components of page map table?  

6. List the advantages of paging. 

7. What is memory sharing? 

8. Give the concept of page replacement policy? 

 

                           PART C (5 Marks) 

1. Briefly explain the logical and physical address map . 

2. Explain fixed and variable partitioned allocation. 



 

 

3. Discuss Internal and External fragmentation with example. 

4. With diagram , explain the concept of compaction. 

5. Discuss with example , the principle of paging. 

6. Discuss various protection and sharing mechanisms. 

7. Explain the hardware needed in paging with diagram. 

8. Discuss the basic concept of Demand paging with diagram. 

9. Write notes on : page frame, page fault, working set and dirty bit. 

10. Explain any two page replacement policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT   IV  

I/O AND  FILE MANAGEMENT, SECURITY & PROTECTION 

Objectives: 

 Understand the structure and performance of disk drives.   

 Discuss about   Disk scheduling and its various algorithms.  

 Explain  the concept of RAID and describe the various levels. 

 Describe the basic concepts of files and file systems. 

 Study Directory structures. 

 Understand the principal techniques for file organization and access methods. 

 Define Disk formatting. 

 To explore file-system security and protection through various mechasisms. 

 

Introduction 



 

 

         Computers operate a great many kinds of I/O devices. General categories are  

storage devices (disks, tapes), transmission devices (network cards, modems), and human-

interface devices (screen, keyboard, mouse). I/O management deals with the control of I/O 

devices connected to the computer and this is a major concern of operating-system since  

I/O devices vary so widely in their function and speed . 

The most important form of I/O is the Magnetic disk I/O. Since there is a vast difference in 

speed between the Disks and processor/main memory which slows down  the performance, 

disk management enforce various disk scheduling policies to improve it. 

In most applications, the file is the central element. And the input to the application is by 

means of a file; but in  all applications, output is saved in a file for long term storage which is  

later accessed  by the user and  programs. The file system permits users to create data  

collections, called files and  access files  through the file management system. The main 

objective for a file management system is to meet the data management needs and 

requirements of the user, which include storage of data and the ability to perform the various 

file operations. 

Protection mechanisms control access to a system by limiting the types of file access 

permitted to users. Protection ensure that only authorised processes can operate on 

memory segments, the CPU, and other resources. 

Security ensures the authentication of system users to protect the integrity of the information 

stored in the system (both data and code), as well as the physical resources of the computer 

system.The security system prevents unauthorized access, malicious destruction or 

alteration of data. 

 

4.1  Disk  Management 

 Disks provide the bulk of secondary storage for modern computer systems. Magnetic 
tape was used as an early secondary storage medium, but the access time is much 
slower than for disks.  

 Modern disk drives are addressed as large one dimensional arrays of logical blocks, 
where the logical block is the smallest unit of transfer. The size of a logical block is 
usually 512 bytes, although some disks can be low level formatted to choose a 
different logical block size, such as 1024 bytes. The one dimensional array of logical 
blocks is mapped onto the sectors of the disk sequentially. 

4.1.1  Disk Structure 

Hard disks have the following basic structure:  

o Hard disks drives are organized as a concentric stack of disks or platters’ which     rotate 

on about a central spindle. 

o Each platter has 2 working surfaces. 

o Platter is made from aluminum, ceramic, or class, coated with a magnetic materials such 

as iron oxide on both sides. 

o Each working surface is divided into a number of concentric rings called tracks. The 

collection of all tracks that are the same distance from the edge of the platter, ( i.e. all 

tracks immediately above one another in the following diagram ) is called a cylinder. 

o Each track is further divided into sectors, each containing 512 bytes of data , although 

some modern disks  use larger sector sizes.  



 

 

o The data on a hard drive is read by read-write heads. The standard configuration  uses 

one head per surface, each on a separate arm, and controlled by a common arm 

assembly which moves all heads simultaneously from one cylinder to another. 

o Each storage unit on a disk can be identified by a 3-coordinate system. 

1. Cylinder (C)   2.  Head/Side (H)   3. Sector (S) 

o During operation the disk rotates at high speeds such as 7200 rpm etc., 

 

Disk Capacity and speed : 

 

The storage capacity of a  disk drive  = 

No. of working surfaces(  or heads) x  No. of tracks per surface x No. of sectors per track 
x  No. of  bytes per sector. 

E.g. 12,495 cylinders x16 heads x 63 sectors x 512 bytes = approx. 6GB 

                

               Disk speed has the following three parameters : 

o The transfer rate is the rate at which data flow between the drive and the computer.  

o The positioning time, sometimes called the access time, consists of the time to move 

the disk arm to the desired cylinder, called the seek time, and the time for the desired 

sector to rotate to the disk head, called the rotational latency.   

o The disk bandwidth is the total number of bytes transferred, divided by the total time 

between the first request for service and the completion of the last transfer.  

      
Figure 4.1 – Hard disk Moving-head disk mechanism. 

4.1.2  Disk   scheduling and its algorithms 
       In multiprogramming systems several different processes may want to use the system's 
resources simultaneously.The important task  of the  operating system is to use the disk 
drives  efficiently.  When the disk is in use, a drive motor spins it at high speed. Most drives 
rotate 60 to 200 times per second.  



 

 

4.2.1.1  Disk scheduling 

Disk scheduling is done by operating systems to schedule I/O requests arriving for disk. 
Disk scheduling is also known as I/O scheduling. In this process,  I/O requests are serviced  
in such a way to minimize the movement of the read/write head and minimizing the seek 
time of the disk drive. 

Need for Disk scheduling: 

 Multiple I/O requests may arrive by different processes and only one I/O request can 
be served at a time by disk controller. Thus other I/O requests need to wait in waiting 
queue and need to be scheduled. 

 Two or more request may be far from each other so can result in greater disk arm 
movement. 

 Hard drives are one of the slowest parts of computer system and thus need to be 
accessed in an efficient manner. 

 

Disk Drive Performance parameters:  

The Disk’s speed and performance are based on the following parameters which categorises 
the  type of  Disk Scheduling Algorithms. 

 Seek Time:Seek time is the time taken to locate the disk arm to a specified track where 
the data is to be read or write. So the disk scheduling algorithm that gives minimum 
average seek time is better. 

 Rotational Latency: Rotational Latency is the time taken by the desired sector of disk to 
rotate into a position so that it can access the read/write heads. So the disk scheduling 
algorithm that gives minimum rotational latency is better. 

 Transfer Time: Transfer time is the time to transfer the data. It depends on the rotating 
speed of the disk and number of bytes to be transferred. 

 Disk Access Time:    Disk Access Time = Seek Time + Rotational Latency + Transfer 
Time 

 Disk Response Time: Response Time is the average of time spent by a request waiting 
to perform its I/O operation. Average Response time is the response time of the all 
requests. Variance Response Time is measure of how individual request are serviced 
with respect to average response time. So the disk scheduling algorithm that gives 
minimum variance response time is better. 

 

Fig 4.2  Disk performance parameters 

4.1.2.2    Disk Scheduling Algorithms 

          Whenever a process needs I/O to or from the disk, it issues a system call to the 
operating system. If the desired disk drive and controller are available, the request can be 
serviced immediately. If it is  busy, any new requests for service will be placed in the pending 
queue. For a multiprogramming system with many processes, the disk queue may often 
have several pending requests. Thus, when one request is completed, the operating system 

http://d30wr2otswzun8.cloudfront.net/wp-content/uploads/2015/10/os1.png


 

 

chooses which pending request to service next. For this, the  operating system  use the 
following  various disk-scheduling algorithms. 

The following disk scheduling algorithms are used to  reduce the seek time of all requests 
and hence the head movement: 

i)  First Come-First Serve (FCFS)  ii) Shortest Seek Time First (SSTF)  iii) Elevator 
(SCAN)  iv) Circular SCAN (C-SCAN)  v)  LOOK  vi) C-LOOK 

 

To explain the above algorithms, let us take the following example: 

Consider a disk queue with requests for I/O to blocks on cylinders as follows: 

 Disk  Queue: 23, 89, 132, 42, 189  

 There are 200 cylinders numbered from 0 - 199  

 The disk head stars at number 100 

i) FCFS Scheduling: ( First-Come, First-Served ) 

This is the simplest form of disk scheduling .  In the first-come, first-served (FCFS) algorithm, 
requests are processed in the order that they arrive. This is very easily implemented with 
a FIFO queue; when Processes  come in, they are put at the end of the queue. 

The order of  processes after serviced as per FCFS : 100,23,89,132,42,189   

            

   Fig.  4.3   FCFS scheduling 

Total time is estimated by total arm motion : 

| 100-23|+|23-89|+|89-132|+|23-132|+|132-42|+|42-189|=77+66+43+109+90+147 = 532 

Advantages:      1)  Every request gets a fair chance   

                           2)  No indefinite postponement 

 

Disadvantages:  1)  Does not try to optimize seek time 

                           2)  May not provide the best possible service 

 

ii)  SSTF Scheduling: (Shortest Seek Time First) 

 

In SSTF (Shortest Seek Time First), requests having shortest seek time are executed first. 
So, the seek time of every request is calculated in advance in queue and then they are 
scheduled according to their calculated seek time. As a result, the request near the disk arm 
will get executed first. SSTF is certainly an improvement over FCFS. 

 

http://everything2.com/title/FIFO
http://everything2.com/title/queue
http://everything2.com/title/queue


 

 

The order of  processes after serviced as per SSTF : 100,89,132,189,42,23 

                            

                                Fig.  4.4   SSTF scheduling 

 

 

Total time is estimated by total arm motion : 

 

Advantages:        1) Average Response Time decreases 

                            2) Throughput increases 

 

Disadvantages:    1) Overhead to calculate seek time in advance 

                             2) Can cause Starvation for a request if it has higher seek time as   

                                 compared to incoming requests 

                             3) High variance of response time as SSTF favours only some requests. 

 

iii) SCAN:  Elevator Algorithm 

 

In SCAN algorithm the disk arm moves into a particular direction and services the requests 
coming in its path and after reaching the end of disk, it reverses its direction and again 
services the request arriving in its path. So, this algorithm works like an elevator and hence 
also known as elevator algorithm. As a result, the requests at the midrange are serviced 
more and those arriving behind the disk arm will have to wait. 

 

Assume we are going inwards (i.e., towards 0), we have  

The order of  processes after serviced as per SCAN  : 100,89,42,23,132,187 

 

    

 

 

          

                                                   Fig 4.5  SCAN  Scheduling 

Total time is estimated by total arm motion : 

| 100-89|+|89-42|+|42-23|+|23-0|+|0-132|+|132-189|=11+47+19+23+132+57 = 257 

Advantages:     1) High throughput. 



 

 

                         2) Low variance of response time. 

                         3) Average response time. 

 

Disadvantages:  1) Long waiting time for requests for locations just visited by disk arm. 

 

iv)  C-SCAN: ( Circular –SCAN) 

Circular scanning works just like the elevator to some extent. In circular SCAN algorithm, 

when the edge of the disc is reached, it returns to the opposite edge without dealing with any 

requests, and then starts again from there. This provides a slight speedup over the SCAN 

algorithm, and is thus preferable to it. The C-SCAN scheduling algorithm essentially treats 

the cylinders as a circular list that wraps around from the final cylinder to the first one. 

The order of  processes after serviced as per C-SCAN  : 100,89,42,23,199,187,132 

                                    

                                         Fig  4.6  C-Scan scheduling 

|100-89| + |89-42| + |42-23| + |23-0| + |0-199| + |199-187|+|187-132|=11+47+19+23+199+12= 311 

Advantages: Provides more uniform wait time compared to SCAN 

v) LOOK: 

 It is similar to the SCAN disk scheduling algorithm except the difference that the disk arm in 

spite of going to the end of the disk goes only to the last request to be serviced in front of the 

head and then reverses its direction from there only. Thus it prevents the extra delay which 

occurred due to unnecessary traversal to the end of the disk. 

                

                           Fig.4.7   Look Scheduling 

http://everything2.com/title/circular
http://everything2.com/title/edge
http://everything2.com/title/speedup


 

 

 

 

vi) CLOOK: As LOOK is similar to SCAN algorithm, in similar way, CLOOK is similar to 

CSCAN disk scheduling algorithm. In CLOOK, the disk arm inspite of going to the end goes 

only to the last request to be serviced in front of the head and then from there goes to the 

other end’s last request. Thus, it also prevents the extra delay which occurred due to 

unnecessary traversal to the end of the disk. 

 

                              

                                          Fig. 4.8   C-LOOK scheduling 

 

4.1.3  RAID Technology 
RAID stands for Redundant Array of Inexpensive (or sometimes "Independent") Disks. 
 
RAID is a method of combining several hard disk drives into one logical unit. RAID arrays 
appear to the operating system  as a single logical hard disk. Here the disk drives are 
independent, and are multiple in number. 

The main advantage of RAID, is that RAID is fault tolerant. In most of the RAID level's data 
is redundant in multiple disks, so even if one disk fails, or even two sometimes, the data will 
be safe and the operating system will not be even aware of the failure. DATA loss is 
prevented due to the fact that data can be recovered from the disk that are not failed. 

 

Characteristics  used in RAID are: 

  

 Stripping 

 Mirroring 

 Parity 

 1. Striping : 

RAID is collection of multiple disk’s and in these disk ,predefined number of contiguously 
addressable disk blocks are defined which are called as strips and collection of such strips in 
aligned in multiple disk is called stripe. 



 

 

  

Fig. 4.9  Striping 

Hard disk  is a collection of multiple addressable blocks and these blocks are stacked 
together and called strip and  multiple such hard disks are placed parallel or serially. Then 
such combination of disk is called stripe. 
  

2. Mirroring : 

Mirroring is a mechanism in which the same data is written to another disk drive. "mirroring" 
is simply a pair of disk drives which store duplicate data, but appear to the computer as a 
single drive; the number of drives in the array will always be an even number.  The main 
advantage of mirroring(multiple sets of same data on two disks), is that it provides 100 
percent redundancy. 

Suppose there are two drives in mirroring mode, then both of them will contain an exact 
same copy of data. So even if one disk fails, the data is safe on the other. 

 

Fig. 4.10   Mirroring 

When the failed disk is replaced with a new disk, the controller copies the data from the 
surviving disk of the mirrored pair. Data is simultaneously recorded on both the disk. 
Though this type of RAID gives you highest availability of data but it is costly as it requires 
double amount of disk space and thus increasing the cost. 

3. Parity : 

http://www.recover-raid.com/glossary_rRAID.html#mirroring
http://storagetutorials.com/wp-content/uploads/2013/03/RAID-Striping.png
http://storagetutorials.com/wp-content/uploads/2013/03/RAID-Mirroring.png


 

 

Mirroring involves high cost, so to protect the data new technique is used with striping called 
parity. This is reliable and low cost solution for data protection. In this method and 
additional HDD or disk is added to the stripe width to hold parity bit. 

Parity is a redundancy check that ensures full protection of data without maintaining a full set 
of duplicate data. 

 

Fig.4.11  Parity 

 The parity bits are used to re-create the data at the time of failure. Parity information can be 
stored on separate, dedicated HDDs or distributed across all the drives in a RAID set. In the 
above image, parity is stored on a separate disk. 

The first three disks, labeled D, contain the data. The fourth disk, labeled P, stores the parity 
information, which in this case is the sum of the elements in each row. Now, if one of the 
Disks (D) fails, the missing value can be calculated by subtracting the sum of the rest of the 
elements from the parity value. 

Standard RAID levels 

RAID 0: In a RAID 0 system data are split up in blocks that get written across all the drives 
in the array. By using multiple disks (at least 2) at the same time, this offers superior I/O 
performance. This configuration has striping but no redundancy of data. It offers the best 
performance but no fault-tolerance. 

http://searchstorage.techtarget.com/definition/RAID-0-disk-striping
http://storagetutorials.com/wp-content/uploads/2013/03/RAID-Parity.png


 

 

 

Fig 4.12  RAID 0 

 

Advantages 

 RAID 0 offers great performance, both in read and write operations. There is no 

overhead caused by parity controls. 

 All storage capacity is used, there is no overhead. 

 The technology is easy to implement. 

Disadvantages 

 RAID 0 is not fault-tolerant. If one drive fails, all data in the RAID 0 array are lost. It 

should not be used for mission-critical systems. 

RAID 1: Also known as disk mirroring. Data are stored twice by writing them to both the data 

drive (or set of data drives) and a mirror drive (or set of drives) . If a drive fails, the controller 
uses either the data drive or the mirror drive for data recovery and continues operation. You 
need at least 2 drives that duplicate the storage of data for a RAID 1 array.There is no 
striping. Read performance is improved since either disk can be read at the same time. Write 
performance is the same as for single disk storage. 

In a RAID 0 system data are split up in blocks that get written across all the drives in the 
array. By using multiple disks (at least 2) at the same time, this offers superior I/O 
performance. 

 



 

 

 

 

Fig 4.13  RAID 1 

Advantages 

 RAID 1 offers excellent read speed and a write-speed that is comparable to that of a 

single drive. 

 In case a drive fails, data do not have to be rebuild, they just have to be copied to the 

replacement drive. 

 RAID 1 is a very simple technology. 

Disadvantages 

 The main disadvantage is that the effective storage capacity is only half of the total 

drive capacity because all data get written twice. 

 Software RAID 1 solutions do not always allow a hot swap of a failed drive. That 

means the failed drive can only be replaced after powering down the computer it is 

attached to. For servers, this is not suitable .  

RAID 2: This configuration uses striping across disks with some disks storing error 

checking and correcting (ECC) information. It has no advantage over RAID 3 and is no 

longer used. 

http://searchstorage.techtarget.com/definition/RAID-2-redundant-array-of-independent-disks
http://searchnetworking.techtarget.com/definition/ECC


 

 

 

Fig. 4.14   RAID 2 

RAID 3: This technique uses striping and dedicates one drive to storing parity 
information. The embedded ECC information is used to detect errors. Data recovery is 
accomplished by calculating the exclusive OR (XOR) of the information recorded on the 
other drives. Since an I/O operation addresses all drives at the same time, RAID 3 
cannot overlap I/O. For this reason, RAID 3 is best for single-user systems with long 
record applications. 

 

 

 

Fig 4.15  RAID 3 

RAID 4: This level uses large stripes, which means you can read records from any single 
drive. This allows you to use overlapped I/O for read operations. Since all write 
operations have to update the parity drive, no I/O overlapping is possible. RAID 4 offers 
no advantage over RAID 5. 

http://searchstorage.techtarget.com/definition/RAID-3-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/parity
http://searchdisasterrecovery.techtarget.com/definition/data-recovery
http://searchstorage.techtarget.com/definition/RAID-4-redundant-array-of-independent-disks


 

 

 

Fig. 4.16  RAID 4 

 

RAID 5: This level is based on block-level striping with parity. This is the most common 

secure RAID level. It requires at least 3 drives but can work with up to 16. Data blocks are 
striped across the drives and on one drive a parity checksum of all the block data is written. 
The parity data are not written to a fixed drive, they are spread across all drives, as the 
drawing below shows. Using the parity data, the computer can recalculate the data of one of 
the other data blocks, should those data no longer be available. That means a RAID 5 array 
can withstand a single drive failure without losing data or access to data. Although RAID 5 
can be achieved in software, a hardware controller is recommended. Often extra cache 
memory is used on these controllers to improve the write performance. 

Advantages 

 Read data transactions are very fast while write data transactions are somewhat 
slower (due to the parity that has to be calculated). 

 If a drive fails, you still have access to all data, even while the failed drive is being 

replaced and the storage controller rebuilds the data on the new drive. 

Disadvantages 

 Drive failures have an effect on throughput, although this is still acceptable. 

 This is complex technology. If one of the disks in an array using 4TB disks fails and is 

replaced, restoring the data (the rebuild time) may take a day or longer, depending 

on the load on the array and the speed of the controller. If another disk goes bad 

during that time, data are lost forever. 

http://searchstorage.techtarget.com/definition/RAID-5-redundant-array-of-independent-disks
http://searchsqlserver.techtarget.com/definition/block


 

 

 

Fig. 4.17  RAID 5 

RAID 6: This technique is similar to RAID 5 but includes a second parity scheme that is 
distributed across the drives in the array. The use of additional parity allows the array to 
continue to function even if two disks fail simultaneously. However, this extra protection 
comes at a cost. RAID 6 arrays have a higher cost per gigabyte (GB) and often have 
slower write performance than RAID 5 arrays. 

 

Fig. 4.18  RAID 6 

Advantages 

 Like with RAID 5, read data transactions are very fast. 

 If two drives fail, you still have access to all data, even while the failed drives are 

being replaced. So RAID 6 is more secure than RAID 5. 

Disadvantages 

 Write data transactions are slowed down due to the parity that has to be calculated. 

 Drive failures have an effect on throughput, although this is still acceptable. 

 This is complex technology. Rebuilding an array in which one drive failed can take a 

long time. 

http://searchstorage.techtarget.com/definition/RAID-6-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/gigabyte


 

 

4.2  File Management 

Most computer systems employ secondary storage devices such as magnetic disk, magnetic 
tape, optical media, flash drives etc. to provide cheap, non-volatile storage for programs and 
data. The programs, and the user data they work with, are stored in discrete storage units 
called files.  

Important  Tasks of the File management system of the operating system : 

i) allocating space for files on secondary storage media as and when required. 

ii) keeping track of creating, destroying, organizing, reading, writing, modifying, 

moving, and controlling access to files; and  

iii) management of resources used by files.  

iv) keeping access times (the time required to write data to or read data from 

secondary storage) to a minimum. 

4.2.1  File  concept 

4.2.1.1 File definition: 

A file is a named collection of related information that is recorded on secondary storage such 
as magnetic disks, magnetic tapes and optical disks. In general, a file is a sequence of bits, 
bytes, lines or records which is created by users. 

4.2.1.2 File Structure 

A File Structure should be according to a required format that the operating system can 
understand. 

 A file has a certain defined structure according to its type. 

 A text file is a sequence of characters organized into lines. 

 A source file is a sequence of  procedures and functions. 

 An object file is a sequence of bytes organized into blocks that are understandable 

by the machine. 

 When operating system defines different file structures, it also contains the code to 

support these file structure. Unix, MS-DOS support minimum number of file structure. 

4.2.1.3 File Type 

File type refers to the ability of the operating system to distinguish different types of file such 
as text files, source files and binary files etc. Many operating systems support many types of 
files. Operating system like MS-DOS and UNIX have the following types of files − 

Ordinary files These are the files that contain user information. These may have text, 
databases or executable program. The user can apply various operations on such files like 
add, modify, delete or even remove the entire file. 

Directory files These files contain list of file names and other information related to these 
files. 

Special files These files are also known as device files. These files represent physical 
device like disks, terminals, printers, networks, tape drive etc. 



 

 

These files are of two types − 

 Character special files − data is handled character by character as in case of 
terminals or printers. 

 Block special files − data is handled in blocks as in the case of disks and tapes. 

4.2.2  File Attributes 

A file has generally the following  attributes  but vary from operating system to another: 

Name: The symbolic file name is the only information kept in human readable form. 

Identifier: This unique tag, usually a number, identifies the file within the file system; it is the 
non-human readable name for the file 

Type: This information is needed for those systems that support different types. 

Location: This information is a pointer to a device and to the location of the file on that 
device. 

Size: The current size of the file (in bytes, words, or blocks), and possibly the maximum 
allowed size are included in this attribute. 

Protection: Access-control information determines who can do reading, writing, executing 
etc.,. 

Time, date, and user identification: This information may be kept for creation, last 
modification, and last use. These data can be useful for protection, security, and usage 
monitoring. 

The information about all files is kept in the directory structure.  

4.2.3   File Operations 

A file is an abstract data type. To define a file properly, we need to consider the 
operations that can be performed on files. 

Six basic file operations. The OS can provide system calls to create, write, read, 
reposition, delete, and truncate files. 

 Creating a file. Two steps are necessary to create a file. 
i) Space in the file system must be found for the file. 

      ii) An entry for the new file must be made in the directory. 

 Writing a file. To write a file, we make a system call specifying both the name 
of the file and the information to be written to the file. The system must keep a 
write pointer to the location in the file where the next write is to take place. 
The write pointer must be updated whenever a write occurs. 

 Reading a file. To read from a file, we use a system call that specifies the 
name of the file and where (in memory) the next block of the file should be 
put. The system needs to keep a read pointer to the location in the file where 
the next read is to take place. 



 

 

 Because a process is usually either reading from or writing to a file, the 
current operation location can be kept as a per-process current-file-position 
pointer. 

 Both the read and write operations use this same pointer, saving space and 
reducing system complexity. 

 Repositioning within a file. The directory is searched for the appropriate 
entry, and the current-file-position pointer is repositioned to a given value. 
Repositioning within a file need not involve any actual I/O. This file operation 
is also known as a file seek. 

 Deleting a file. To delete a file, we search the directory for the named file. 
Having found the associated directory entry, we release all file space, so that 
it can be reused by other files, and erase the directory entry. 

 Truncating a file. The user may want to erase the contents of a file but keep 
its attributes. Rather than forcing the user to delete the file and then recreate 
it, this function allows all attributes to remain unchanged (except for file 
length) but lets the file be reset to length zero and its file space released.  

4.2.4  Directory Structure 

4.2.4.1  Directory  

 A directory is a location for storing files on the  computer. Directories are found in a 

hierarchical file system, such as Linux, MS-DOS, OS/2, and Unix. A directory is an 

organizational unit, or container, used to organize folders and files into a hierarchical 

structure. Directories contain bookkeeping information about files. A  directory  is considered 

as a file cabinet that contains folders that contain files. Many graphical user interfaces (GUI) 

use the term folder instead of directory. 

                 

                                Fig 4.19  example for a Directory  

4.2.4.2   Directory related terms and path: 

http://www.computerhope.com/jargon/h/hierfile.htm
http://www.computerhope.com/jargon/l/linux.htm
http://www.computerhope.com/msdos.htm
http://www.computerhope.com/jargon/o/os2.htm
http://www.computerhope.com/unix.htm
http://www.webopedia.com/TERM/F/folder.html
http://www.webopedia.com/TERM/F/file.html
http://www.webopedia.com/TERM/H/hierarchical.html
http://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html
http://www.webopedia.com/TERM/F/folder.html


 

 

                       

• Root  Directory  is  the top directory in a file system. For example, in DOS systems 

the root directory is called  \ . The directory at the highest level is called the root 

directory  

• To indicate a particular file using text, we specify that file’s path, which is the series 

of directories through which you must go to find the file 

• An absolute path name begins at the root and specifies each step down the tree 

until it reaches the desired file or directory 

• A relative path name begins from the current working directory 

 

 

Below is an example of what a directory path would look like in MS-DOS. 

 

• In the above example, C: is the drive letter and the current directory is 
System32, which is a subdirectory of the Windows directory. 

Uses of Directories :  

 A directory entry provides the info needed to find the disk data blocks of a file 

 disk address of first block and size 

 address of first block 

 number of associated i-node 

 File attributes and file names can be stored in the directory entry (Windows) 

or in its i-node (Unix). 

 File name may have  variable length and long file names contain 255 chars. 

http://www.webopedia.com/TERM/D/directory.html
http://www.webopedia.com/TERM/F/file_management_system.html
http://www.webopedia.com/TERM/D/DOS.html
http://www.webopedia.com/TERM/S/system.html
http://www.computerhope.com/jargon/p/path.htm
http://www.computerhope.com/jargon/d/drive.htm
http://www.computerhope.com/jargon/s/subdirec.htm


 

 

4.2.4.3   Types  of  Directories : There are many types of directory structure in 
Operating System. They are as follows :- 

1. Single Level Directory  2. Two Level Directory 3. Tree Structured Directory 

i) Single Level Directory : 

In Single Level Directory , all files are in the same directory. Simple to implement, 

but each file must have a unique name.  

 Limitations of Single Level Directory 

a) Since all files are in the same directory, they must have unique name. 

b) If two user call their data free test, then the unique name rule is violated. 

c) Files are limited in length. 

d) Even a single user may find it difficult to remember the names of all files as 

the   number of file increases. 

e) Keeping track of so many file is a difficult  task. 

 

                                       Fig.  4.20   Single Level Directory 

ii) Two Level Directory : 

1. Each user has its own User File Directory (UFD). 

2. File names only need to be unique within a given user's directory. 

3. A master file directory is used to keep track of each users directory, and must be 

maintained   when users are added to or removed from the system. 

4. A separate directory is generally needed for system ( executable ) files. 

5. When the user job start or user log in, the system Master File Directory (MFD) is 

searched. MFD is indexed by user name or Account Number. 

6. When user refers to a particular file, only his own UFD is searched. 

 Thus different users may have files with same name. To have a particular file 

uniquely, in a two level directory, we must give both the user name and file name. 

 

7. A two level directory can be a tree or an inverted tree of height 2 

 

8. The root of a tree is Master File Directory (MFD). Its direct descendents are User File 

Directory (UFD). The descendents of UFD's are file themselves. The files are the 

leaves of the tree.  

 

 Limitations of Two Level Directory 

The structure effectively isolates one user from another. 



 

 

 

Fig. 4.21  Two Level Directory 

iii) Tree Structured Directory : 

 A directory (or Sub directory) contains a set of files or sub directories. All directories 
has the same internal format. Each user / process has the concept of a current 
directory from which all ( relative ) searches take place. 

 Files may be accessed using either absolute pathnames ( relative to the root of the 
tree ) or relative pathnames ( relative to the current directory. ) 

 Directories are stored the same as any other file in the system, except there is a bit 
that identifies them as directories, and they have some special structure that the OS 
understands.  

 

Fig.  4.22   Tree structured Directory 

4.2.5 File Allocation Methods 

File Allocation : 

 File allocation is a technique used to allocate space for files so that disk space is 

utilized effectively and files can be accessed quickly.  

 Disks are divided into physical blocks (sectors on a track). 

 Files are divided into logical blocks (subdivisions of the file). 

 Logical block size = some multiple of a physical block size. 



 

 

 The operating system or file management system is responsible for allocating blocks 

to files. 

 Space is allocated to a file as one or more portions (contiguous set of allocated disk 

blocks).  A portion is the logical block size. 

 File allocation table (FAT) - data structure used to keep track of the portions    

assigned to a file.  

 A preallocation policy requires that the maximum size of a file be declared at the time  

      of the file creation request. 

 Dynamic allocation allocates space to a file in portions as needed.  

Three major methods of allocating disk space are: 

1. Contiguous Allocation  
 
2. Non – contiguous  :    i) Linked  or chained Allocation 
                                           ii) Indexed Allocation. 

 

      1. Contiguous File Allocation: 

     It store each file as a contiguous run of disk blocks. Thus on a disk with 1-KB blocks, a 

50-KB file would be allocated 50 consecutive blocks.  

  With this  allocation method, a user must indicate the file size before creating the file. 

 Then, the operating system searches the disk to find contiguous disk blocks for the file. 

 The directory entry is easy. It contains the starting  disk address of this file and the 

number of disk blocks. 

 Therefore, if the initial address is b and the number of blocks is n, the file will occupy 

blocks b, b+1, b+2, …, b+n-1. 

 

  

File Name Start Block Length 

FileA 2 3 

File B 9 5 

File C 18 8 

File D 30 2 

File E 26 3 

             File Allocation Table 

 



 

 

       

4.23   Contiguous File Allocation 

Advantage: 

 Contiguous allocation is easy to implement because keeping track of  file's blocks is 
done by knowing  the disk address of the first block and the number of blocks in the 
file.  

 It has high performance because the entire file can be read from the disk in a single 
operation since only one seek is needed. 

Disadvantage: 

 It can be considered as a form of dynamic memory allocation, and external 
fragmentation may occur and compaction may be needed. 

 It is difficult to estimate the file size. The size of a file may grow at run time and 
may be larger than the specified number of allocated blocks. In this case, the OS 
must move the blocks in order to provide more space.  

2. Non- Contiguous Allocation : 

i) Linked (Chained) Allocation: 

 Typically, allocation is on an individual block basis.  

 Each block contains a pointer to the next block in the chain with a linked list.  

 Again, the file allocation table needs just a single entry for each file, showing the 

starting  block and the length of the file.  

 Although preallocation is possible, it is more common simply to allocate blocks as    

            needed.  

 The selection of blocks is made easy . Any free block can be added to a chain.    

 To select an individual block of a file requires tracing through the chain to the desired  

            block. 

There is no external fragmentation to worry about because only one block at a time is 
needed. This type of physical organization is  



 

 

 

Fig  4.24  Linked File Allocation 

Advantages: 

 File size does not have to be specified. 
 No external fragmentation. 
 best suited to sequential files that are to be processed sequentially. 

Disadvantages: 

 It is not used for  direct access files. 
 Each block contains a pointer, wasting space. 
 Blocks scatter everywhere and a large number of disks seek may be necessary. 

ii)   Indexed Allocation: 

 Each file has an index block that is an array of disk block addresses.  
 The i-th entry in the index block points to the i-th block of the file.  
 A file’s directory entry contains a pointer to its index.  
 Hence, the index block of an indexed allocation plays the same role as the page 

table. Index allocation supports both sequential and direct access without external 
fragmentation. 

 The indexed allocation suffers from wasted space. The index block may not be fully 
used (i.e., internal fragmentation). 

 The number of entries of an index table determines the size of a file. To overcome 
this problem, we can have multiple index blocks and chain them into a linked list. 

 We can also have multiple index blocks, but make them a tree just like the indexed 
access method. 

 Another alternative is that we can have a combination of both. 



 

 

 

4.25  Indexed  File Allocation 

Advantages: 

 File size does not have to be specified. 
 No external fragmentation. 

4.2.6  File Access Methods 

File access mechanism refers to the manner in which the records of a file may be accessed. 
There are several ways to access files − 

 Sequential access 
 Direct/Random access 
 Indexed sequential access 

Sequential access 

A sequential access is that in which the records are accessed in some sequence, i.e., the 
information in the file is processed in order, one record after the other. This access method 
is the most primitive one. Example: Compilers usually access files in this fashion. 

 

Direct/Random access 

 Random access file organization provides, accessing the records directly. 
 Each record has its own address on the file with by the help of which it can be 

directly accessed for reading or writing. 
 The records need not be in any sequence within the file and they need not be in 

adjacent locations on the storage medium. 

Indexed sequential access 

 This mechanism is built up on base of sequential access. 
 An index is created for each file which contains pointers to various blocks. 
 Index is searched sequentially and its pointer is used to access the file directly. 



 

 

Some file systems provide different access methods that specify ways the application will 
access data 

 Sequential access:Read bytes one at a time, in order 
 Direct access:Random access given a block/byte # 
 Record access:File is array of fixed- or variable-sized records 
 Indexed access:FS contains an index to a particular field of each record in a file • 

apps can find a file based on value in that record (similar to DB) 

4.2.7  File System Structure 

Disks provide the bulk of secondary storage on which a file system is maintained. They have 
two characteristics that make them a convenient medium for storing multiple files: 

 They can be rewritten in place; it is possible to read a block from the disk, to modify 
the block, and to write it back into the same place. 

 They can access directly any given block of information on the disk. Thus, it is simple 
to access any file either sequentially or randomly, and switching from one file to 
another requires only moving the read write heads and waiting for the disk to rotate. 

Rather than transferring a byte at a time, to improve I/O efficiency, I/O transfers between 
memory and disk are performed in units of blocks. Each block is one or more sectors. 
Depending on the disk drive, sectors vary from 32 bytes to 4,096 bytes, they are 512 bytes. 

 

File Structure 

 

 

Three kinds of files  

 byte sequence   

 record sequence  

 tree  

a. Byte Sequence: 



 

 

The file in Fig. (a) is just an unstructured sequence of bytes. In effect, the 
operating system does notknow or care what is in the file. All it sees are bytes. 
Any meaning must be imposed by user-level programs. Both UNIX and Windows 
98 use this approach. 

 

b. Record Sequence: 

In this model, a file is a sequence of fixed-length records, each with some internal 
structure. Central to the idea of a file being a sequence of records is the idea that 
the read operation returns one record and the write operation overwrites or 
appends one record. As a historical note, when the 80-column punched card was 
king many (mainframe) operating systems based their file systems on files 
consisting of 80-character records, in effect, card images 

 

c. Tree: 

In this organization, a file consists of a tree of records, not necessarily all the 
same length, eachcontaining a key field in a fixed position in the record. The tree 
is sorted on the key field, to allow rapid searching particular key. 

4.2.8   Disk formatting 
               Disk formatting is the process of preparing a data storage device such as a hard 
disk drive, solid-state drive, floppy disk or USB flash drive for initial use. It is an operation in 
which a new disk medium is fully prepared to store files. The formatting operation may also 
create one or more new file systems.  

Disk Formatting involves three different processes : 

i) Low-level formatting or Physical formatting - performs basic medium preparation. 

ii) Partitioning - making the data storage device visible to an operating system. 

iii) High-level formatting or Logical formatting - generating a new file system .   

i) Low-level formatting :  Low-level formatting is the process of marking out cylinders and 
tracks for a blank hard disk, and then dividing tracks into multiple sectors. This process 
creates physical format which defines where the data is saved and thus creating the 
structure of the disk. Low level formatting is performed by disk manufacturers itself. The disk 
drive's controller marks the surfaces of the disks indicating the start of a recording block and 
other control information to be used later to read or write data. 

 

ii) Partitioning : This is a process which divides a disk into one or more regions, writing data 
structures to the disk to indicate the beginning and end of the regions. This level of 
formatting often includes checking for defective tracks or defective sectors. 

iii) High-level formatting : After low-level formatting is complete, we have a disk with 

tracks and sectors--but nothing written on them. High-level formatting is the process of 

writing the file system structures , cluster size, partition label, etc., on the newly created 

partition on the disk that make  the disk to  be used for storing programs and data. This is a 

fast operation, and is sometimes referred to as quick formatting.. And we can also say high-

level formatting just clears data on hard disk, generates boot information, initializes FAT, and 

labels logical bad sectors when the partition has completed .This formatting includes the 

data structures used by the OS to identify the logical drive or partition's contents. This may 

occur during operating system installation, or when adding a new disk. This formatting is 

made by users themselves. 

https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Floppy_disk
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Disk_partitioning
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Disk_partitioning


 

 

4.3  Security and protection 

Security refers to providing a protection system to computer system resources such as CPU, 
memory, disk, software programs and most importantly data/information stored in the 
computer system. If a computer program is run by an unauthorized user, then he/she may 
cause severe damage to computer or data stored in it. So a computer system must be 
protected against unauthorized access, malicious access to system memory, viruses, worms 
etc. 

Protection refers to a mechanism for controlling the access of programs, processes, or users 
to the resources defined by a computer system. This mechanism must provide a means for 
specifying the controls to be imposed, together with a means of enforcement. 

4.3.1  Security Threats 

 Security Threats can be classified into i) Program Threats  ii) System Threats as follows.    

4.3.1.1 Program Threats 

Operating system's processes and kernel do the designated task as instructed. If a user 
program made these process do malicious tasks, then it is known as Program Threats. One 
of the common example of program threat is a program installed in a computer which can 
store and send user credentials via network to some hacker. Following is the list of some 
well-known program threats. 

 Trojan Horse − Such program traps user login credentials and stores them to send 
to malicious user who can later on login to computer and can access system 
resources. 

 Trap Door − If a program which is designed to work as required, have a security hole 
in its code and perform illegal action without knowledge of user then it is called to 
have a trap door. 

 Logic Bomb − Logic bomb is a situation when a program misbehaves only when 
certain conditions met otherwise it works as a genuine program. It is harder to detect. 

 Virus − Virus as name suggest can replicate themselves on computer system. They 
are highly dangerous and can modify/delete user files, crash systems. A virus is 
generatlly a small code embedded in a program. As user accesses the program, the 
virus starts getting embedded in other files/ programs and can make system 
unusable for user 

4.3.1.2  System Threats 

System threats refers to misuse of system services and network connections to put user in 
trouble. System threats can be used to launch program threats on a complete network called 
as program attack. System threats creates such an environment that operating system 
resources/ user files are misused. Following is the list of some well-known system threats. 

 Worm − Worm is a process which can choke down a system performance by using 
system resources to extreme levels. A Worm process generates its multiple copies 
where each copy uses system resources, prevents all other processes to get 
required resources. Worms processes can even shut down an entire network. 

 Port Scanning − Port scanning is a mechanism or means by which a hacker can 
detects system vulnerabilities to make an attack on the system. 



 

 

 Denial of Service − Denial of service attacks normally prevents user to make 
legitimate use of the system. For example, a user may not be able to use internet if 
denial of service attacks browser's content settings. 

 4.3.2  Security Policies and Mechanisms 

4.3.2.1  Security Policies 

To protect a system, we must take security measures at four levels:  

1. Physical - The site or sites containing the computer systems must be physically secured 
against harmful entry by intruders. Both the machine rooms and the terminals or 
workstations that have access to the machines must be secured. 

2.Human - There is some concern that the humans who are allowed access to a 
system be trustworthy, and that they cannot be coerced into breaching security. 
However more and more attacks today are made via social engineering, which 
basically means fooling trustworthy people into accidentally breaching security.  

 Phishing involves sending an innocent-looking e-mail or web 
site designed to fool people into revealing confidential 
information. E.g. spam e-mails pretending to be from e-Bay, 
PayPal, or any of a number of banks or credit-card companies. 

 Dumpster Diving involves searching the trash or other 
locations for passwords that are written down. ( Note: 
Passwords that are too hard to remember, or which must be 
changed frequently are more likely to be  

      written down somewhere close to the user's station. ) 

 Password Cracking involves divining users passwords, either 
by watching them type in their passwords, knowing something 
about them like their pet's names, or simply trying all words in 
common dictionaries. 

3.Operating System - The OS must protect itself from security breaches, such as 
runaway processes ( denial of service ), memory-access violations, stack overflow 
violations, the launching of programs with excessive privileges, and many others. 

 4. Network  - Much computer data in modern systems travels over private leased lines, 
shared lines like the Internet, wireless connections, or dial-up lines. Intercepting these data 
could be just as harmful as breaking into a computer; and interruption of communications 
could constitute a remote denial-of-service attack, diminishing users' use of and trust in the 
system. 

4.3.2.2  Authentication 

Authentication refers to identifying each user of the system and associating the executing 
programs with those users. It is the responsibility of the Operating System to create a 
protection system which ensures that a user who is running a particular program is 
authentic. Operating Systems generally identifies/authenticates users using following three 
ways − 



 

 

 Username / Password − User need to enter a registered username and password 
with Operating system to login into the system. 

 User card/key − User need to punch card in card slot, or enter key generated by key 
generator in option provided by operating system to login into the system. 

 User attribute - fingerprint/ eye retina pattern/ signature − User need to pass 
his/her attribute via designated input device used by operating system to login into 
the system. 

User Authentication  is carried through following methods: 

i) Passwords   

  This method is the most commonly used for authentication. When the user identifies 
himself by user ID or account name, he is asked for a password. If the user-supplied 
password matches the password stored in the system, the system assumes that the account 
is being accessed by the owner of that account. 

 

Passwords are often used to protect resources  in the computer system like files. Whenever 
a request is made to use the resource, the passwordmust be given. If the password is 
correct, access is granted. Different passwords may be associated with different access 
rights. For example, different passwords may be used for reading files, appending files, and 
updating files. 

ii) Encrypted Passwords 

Passwords are extremely common because they are easy to understand and use. 
Unfortunately, passwords can often be guessed, accidentally exposed, sniffed, or illegally 
transferred from an authorized user to an unauthorized one. So, the operating system uses 
encryption to avoid the necessity of keeping its password list secret. Each user has a 
password. The system uses a function to encode all the passwords. Only encoded 
passwords are stored. 

 

When a user presents a password, it is encoded and compared against the stored encoded 
password. Even if the stored encoded password is seen, it cannot be decoded, so the 
password cannot be determined. Thus, the password file does not need to be kept secret. 

 

iii) One Time passwords 

One-time passwords provide additional security along with normal authentication. In One-
Time Password system, a unique password is required every time user tries to login into the 
system. Once a one-time password is used, then it cannot be used again. One-time 
password are implemented in various ways. 

 Random numbers − Users are provided cards having numbers printed along with 

corresponding alphabets. System asks for numbers corresponding to few alphabets 

randomly chosen. 

 Secret key − User are provided a hardware device which can create a secret id 

mapped with user id. System asks for such secret id which is to be generated every 

time prior to login. 

 Network password − Some commercial applications send one-time passwords to 

user on registered mobile/ email which is required to be entered prior to login. 



 

 

iv) Bio-metrics 

The biometric technologies involved are based on the ways in which individuals can be 
uniquely identified through one or more distinguishing biological traits, such as fingerprints, 
hand geometry, earlobe geometry, retina and iris patterns, voice waves, keystroke 
dynamics, DNA and signatures. Biometric authentication is the application of that proof of 
identity as part of a process validating a user for access to a system. Biometric technologies 
are used to secure a wide  range of electronic communications, including enterprise security, 
online commerce and banking -- even just logging in to a computer or  smart phone. 

Biometric authentication systems compare the current biometric data capture to stored, 
confirmed authentic data in a database. If both samples of the biometric data match, 
authentication is confirmed and access is granted. The process is sometimes part of a 
multifactor authentication system. For example, a smart phone user might log on with his 
personal identification number (PIN) and then provide an iris scan to complete the 
authentication process. 

Summary 

 Disks provide the bulk of secondary storage for modern computer systems. 

 storage capacity of a  disk drive  = 

 No. of working surfaces(  or heads) x  No. of tracks per surface x No. of sectors per 

track x  No. of  bytes per sector. 

 Disk speed has the following three parameters :The transfer rate The positioning 

time, sometimes called the access time, The disk bandwidth  

 Disk scheduling is done by operating systems to schedule I/O requests arriving for 

disk.i.e. I/O scheduling. 

 Disk Drive Performance parameters:Seek Time,Rotational Latency,.Transfer 

Time,Disk Access Time, Disk Response Time. 

 Disk Scheduling Algorithms are First Come-First Serve (FCFS)  ,Shortest Seek Time 

First (SSTF)  , Elevator (SCAN)  , Circular SCAN (C-SCAN)  ,  LOOK  and  C-LOOK 

 RAID stands for Redundant Array of Inexpensive (or sometimes 

"Independent") Disks. 

RAID is a method of combining several hard disk drives into one logical unit. 

 Characteristics  used in RAID are:Stripping,Mirroring,Parity 

 RAID 0: In a RAID 0 system data are split up in blocks that get written across all 

the drives in the array. 

 RAID 1: known as disk mirroring. Data are stored twice by writing them to both 

the data drive (or set of data drives) and a mirror drive (or set of drives) 

 RAID 2: This configuration uses striping across disks with some disks storing 

error checking and correcting (ECC) information. 

 RAID 3: This technique uses striping and dedicates one drive to storing parity 

information. 

 RAID 4: This level uses large stripes, which means you can read records from 

any single drive 

         RAID 5: This level is based on block-level striping with parity 

         RAID 6: This technique is similar to RAID 5 but includes a second parity 

scheme that is distributed across the drives in the array. 

 Files are discrete stored units used to store the programs, and the user data they 

work with. 

http://searchsecurity.techtarget.com/definition/biometrics
http://searchsecurity.techtarget.com/definition/multifactor-authentication-MFA
http://searchstorage.techtarget.com/definition/RAID-0-disk-striping
http://searchstorage.techtarget.com/definition/RAID-2-redundant-array-of-independent-disks
http://searchnetworking.techtarget.com/definition/ECC
http://searchstorage.techtarget.com/definition/RAID-3-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/parity
http://searchstorage.techtarget.com/definition/RAID-4-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/RAID-5-redundant-array-of-independent-disks
http://searchsqlserver.techtarget.com/definition/block
http://searchstorage.techtarget.com/definition/RAID-6-redundant-array-of-independent-disks


 

 

 A file is a named collection of related information that is recorded on secondary 

storage such as magnetic disks, magnetic tapes and optical disks. 

 There are different types of files--Ordinary files, Directory files,Special files  

 File Attributes are Name,  Identifier, Type, Location, Size,Protection, Time, date, and 

user identification:  

 File Operations areCreating a file,Writing a file. Reading a file. Repositioning within a 

file. Deleting a file. Truncating a file.  

 A directory is a location for storing files on the  computer. 

 Types  of  Directories Single Level Directory  , Two Level Directory, Tree Structured 

Directory 

 File allocation is a technique used to allocate space for files so that disk space is 

utilized effectively and files can be accessed quickly.  

 Three major methods of allocating disk space are:Contiguous Allocation,Non – 

contiguous  i.e.   i) Linked  or chained Allocation      ii) Indexed Allocation.  

 File Access Methods- refers to the manner in which the records of a file may be 

accessed. There are several ways to access files −Sequential access,Direct/Random 

access,Indexed sequential access 

 Disk formatting is the process of preparing a data storage device such as a hard disk 

drive, solid-state drive, floppy disk or USB flash drive for initial use.  

 Disk Formatting involves three different processes :Low-level formatting or Physical 

formatting - Partitioning,High-level formatting or Logical formatting.   

 Security refers to providing a protection system to computer system resources such 

as CPU, memory, disk, software programs and most importantly data/information 

stored in the computer system..  

 If a user program made these process do malicious tasks, then it is known as 
Program Threats- Trojan Horse Trap Door Logic Bomb Virus . 

 System threats refers to misuse of system services and network connections to put 
user in trouble. Following is the list of some well-known system threats.Worm − Port 
Scanning − Denial of Service  

 Security Policies-To protect a system, we must take security measures at four levels: 
Physical,.Human,Operating System ,Network  - 

 It is the responsibility of the Operating System to create a protection system which 

ensures that a user who is running a particular program is 

authentic.i.e.authentication.  

 Operating Systems generally identifies/authenticates users using following three 

ways −Username / Password ,User card/key −User attribute - fingerprint/ eye retina 

pattern/ signature. 

 User Authentication  is carried through following methods: Passwords,Encrypted 

Passwords,One Time passwords, Bio-metrics 

 
 

Review  Questions 

Part – A  ( 2 marks) 

1.  List the Various types of I/O devices. 

https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Floppy_disk
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/Disk_partitioning


 

 

2.  Define: Disk Scheduling. 

3.  List any four types of  Disk Scheduling. 

4.  What are Sectors? 

5.  Define: Cylinder. 

6.  What is a Track? 

7.  How will you find the capacity of a Disk? 

8.  What is a RAID array? 

9.  Define: Data striping. 

10. What do you mean by Disk mirroring? 

11. What is Parity? 

12. Define a file. 

13. What are the main tasks of File Management. 

14. List the File attributes. 

15. What are the various operations that can be done on files? 

16. What is a Directory? 

17. List the various types of directories. 

18. List the advantages of two level directories? 

19. Draw a tree based Directory structure. 

20. Define : Contiguous allocation of disk space. 

21. List the advantages of Indexed Allocation. 

22. Give the difference between sequential and random access methods. 

23. What is record sequence file structure? 

24. What is Low level Disk formatting? 

25. Define: Security 

26. Name some of  the security threats. 

27. Define: Authentication. 

28. What is the use of Password? 

29. Name some areas where onetime passwords are used? 

30. Mention  some of the biological traits that are used in Biometrics. 

Part – B ( 3 marks ) 

1. Draw the structure of Disk drive. 

2. Why disk scheduling is needed? 

3. Write about the three characteristics of RAID. 

4. Discuss the various types of Files. 

5. Explain any three terms related with Directories. 

6. Explain Disk Formatting. 

7. What are the Program Threats you know? 

8. Differentiate between the use of Passwords , encrypted passwords and onetime 

passwords. 

Part- C (10 marks) 

1. Explain the structure of  Hard Disk Drive with neat diagram. 

2. Discuss about any two Disk scheduling algorithms. 

3. Explain the Concept of RAID. 

4. Discuss about File attributes. 

5. Write about the various File operations. 



 

 

6. With examples, Explain the Directory structures. 

7. Mention the various File Access methods . Explain any two in  detail. 

8. Discuss about File system structure. 

9. Write about  various Security Policies. 

10. Discuss about various Authentication methods. 

 

 
 

UNIT – V 

LINUX – A CASE STUDY 
 

LEARNING OBJECTIVES 
 

At the end of this unit, the student will be able to  

 

 Understand the history and the features of the Linux operating system. 

 Know about FSF/GNU and the various flavors of Linux OS. 

 Differentiate UNIX and Linux operating systems. 

 Describe the architecture of Linux operating system. 

 Explain the desktop environment of Linux OS. 

 Explain EXT2 and VFS file systems. 

 List and explain different types of file. 

 Explain the concept of file permission and file security. 

 Define and explain mounting and unmounting the file system. 

UNIT – V 

LINUX – A CASE STUDY 
 

LEARNING OBJECTIVES 
 

At the end of this unit, the student will be able to  

 

 Understand the history and the features of the Linux operating system. 

 Know about FSF/GNU and the various flavors of Linux OS. 

 Differentiate UNIX and Linux operating systems. 

 Describe the architecture of Linux operating system. 

 Explain the desktop environment of Linux OS. 

 Explain EXT2 and VFS file systems. 

 List and explain different types of file. 

 Explain the concept of file permission and file security. 

 Define and explain mounting and unmounting the file system. 

 



 

 

 

5.1 INTRODUCTION 

Operating systems are an essential part of any computer system. An operating 

system is the first piece of software that the computer executes when you turn the machine 

on. The operating system loads itself into memory and begins managing the resources 

available on the computer. The most popular operating systems in use today are Windows, 

Mac OS, UNIX and Linux. Linux is a version of UNIX that has gained popularity in recent 

years. 

5.1.1 HISTORY OF LINUX 

Linux is a free and open source operating system. It was developed by Linus 
Torvaldsa student of computer science in the University of Helsinki. He released the version 
of the UNIX operating system called ‘Minix‘. It is a multiuser and multitasking operating 
system. It is released under the GPL (General Public License).  

Torvalds posted an early versionof Linux in 1991. Since then, a number of people, 
collaborating over the Internet,have contributed to the development of Linux, all under the 
control of Torvalds. Today, Linux is a full-featured UNIX like system that runs on all 
platforms. 

 

Key to the success of Linux has been the availability of free software packages under 
theFree Software Foundation (FSF). FSF's goal is stable, platform-independentsoftware that 
is free, high quality, and embraced by the user community. FSF's GNU projectprovides tools 
for software developers, and the GNU Public License (GPL) is the FSF seal ofapproval. 

. 

5.1.2 FEATURES OF LINUX 

Following are some of the important features of Linux operating system. 

 Multi-User − Linux is a multiuser operating system.  At same time multiple users can 

access system resources like memory, ram and application programs. 

 Multitasking: Linux has the ability to handle more than one job at a time. For 

example you have executed a command for sorting a huge list and simultaneously 

typing in a notepad. 

 Portable − Portability was the one of the main features that made Linux so 

popular.Linuxand its application can works on different types of hardware. A Linux 

kernel and application program supports their installation on any kind of hardware 

platform. 

 Open Source − Linux source code is freely available. Multiple teams work to 

enhance the capability of Linux operating system and it is continuously evolving. 

 Hierarchical File System − Linux provides a standard file structure in which system 

files and user files are arranged. 

 Shell − Linux provides a special interpreter program which can be used to execute 

commands of the operating system. 

 Security:Security is a very important part of any operating system. Linux provides 

several security concepts for protecting their users from unauthorized access of their 

data and system.It provides user security using authentication features like password 

protection, controlled access to specific files and encryption of data. 

http://computer.howstuffworks.com/computer-memory.htm


 

 

 Communication: Linux has an excellent feature for communication. It can be within 

the network of a single main computer, or between two or more such 

computer networks. 

 

Difference between UNIX and LINUX 

S.No L i n u x U N I X 

1 Linux is free and open source software. 

Most UNIX like operating systems are not free. Licensed versions are used for commercial purpose .  

2 Linux can be freely distributed, downloaded freely, distributed through magazines, books etc.  Different flavors of Unix have different cost structures.  

3 L i n u x  i s  u s e r  f r i e n d l y  O S U n i x  i s  n o t  u s e r  f r i e n d l y  O S 

4 General user can use Linux. For Example From home users to developers can use Linux Unix operating systems were developed mainly for mainframes, servers and workstations. So normal users cannot easily use Unix .  

5 Linux can be installed on a wide variety of computer hardware, ranging from mobile phones, tablet computers and video game consoles, to mainframes and supercomputers.  Unix is restricted. It cannot be installed in any hardware.  

6 Linux typically provides two GUIs, KDE and Gnome Initially Unix was a command based OS, but later a GUI was created called Common Desktop Environment.  

7 Linux supports ext2, procfs, sysfs, ramfs and tmpfs file systems.  Unix supportsgpfs, jfs, hfs, zfs, xfs file systems.  

 

5.1.3 LINUX ARCHITECTURE 

Linux falls under the category of the layered architecture. It consists of the following layers 

 

 

Figure 5.1 Architecture of Linux Operating System 

 Hardware layer – Hardware consists of all peripheral devices (RAM/ HDD/ CPU 

etc.). 

 Kernel – Core component of operating system, for all basic input/output 

management it interacts directly with the hardware. 



 

 

 Shell –It is an interface between the user and the kernel. It hides the complexity of 

the kernel’s functions from users. It receives commands from user and executes 

kernel’s functions. 

 Application Software –An utility programs that provide the user most of the 

functionalities of an operating systems 

 Users – System users, who interacts directly with the system and application 

software’s. 

5.1.4 POPULAR FLAVORS OF LINUX 

Linux is free and open source software. It can be modified and distributed freely. 
Various organizations are involved in modification and redistribution of Linux operating 
system freely. The different enhancements to the Linux are called flavors. 

S . N O L I N U X  F L A V O R S D E S C R I P T I O N 

1 
U b u n t u 

http://www.ubuntulinux.org/ 

Ubuntu is a Debian-based Linuxoperating system for personal computers,  tablets and smart phones. It hides the complexity of the underlying operating system from the user and to provide maximum reliability.  

2 
F e d o r a 

ht tp: / / fedorapro ject .org / 

Fedora is the free distribution of Red Hat Linux. It includes a powerful desktop GUI based on GNOME and KDE. It is strong on securit y.  

3 
L i n u x  M i n t 

http://www.linuxmint.com/ 

It is a user friendly version of Linux, based on an Ubuntu core and sometimes described as "an improved Ubuntu". It has a ful l-featured desktop GUI.  

4 

D e b i a n 

https://www.debian.com/ 

Debian is currently known as one of the well-tested and bug-free Linux distribution.  

5 
M a n d r i v a 

w w w . m a n d r i v a . c o m / 

Mandriva uses RPM for package management, and its design focuses on ease of installation and use.  

6 
P C L i n u x O S 

w w w . p c l i n u x o s . c o m / 

It is a lighter-weight version of Mandriva with good support for graphics drivers, browser plugins and media codec’s . 

7 

P u p p y  L i n u x 

h t t p : / / p u p p y l i n u x . o r g / 

 

Small footprint Linux(100 MB once installed), sui table for old hardware or low specification machines. Can run easily from a USB memory stick or Live CD/DVD. It includes a full desktop GUI, browser, general purpose tools and minimal applications .  

8 

T i n y C o r e 

http://www.tinycorelinux.com/ 

 

Very small footprint (10MB once installed) Linux, suitable for old hardware or low specification machines  

 

 

 

5.1.5 FSF/GNU 

5.1.5.1 FREE SOFTWARE FOUNDATION(FSF) 

http://www.ubuntulinux.org/
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Tablet_computers
https://en.wikipedia.org/wiki/Smartphone
http://fedoraproject.org/
http://www.linuxmint.com/
http://www.linuceum.com/Distros/osDesktopMint.php
https://www.debian.com/
http://www.mandriva.com/
http://www.computerhope.com/jargon/r/rpm.htm
http://www.pclinuxos.com/
http://puppylinux.org/main/Overview%20and%20Getting%20Started.htm
http://www.linuceum.com/Distros/osInstallPuppyLinux.php
http://www.linuceum.com/Distros/osDesktopPuppy.php
http://www.tinycorelinux.com/


 

 

The Free Software Foundation (FSF) is founded by Richard Stallman on 4 October 
1985 to support the free software movement, which promotes the universal freedom to 
study, distribute, create, and modify the computer software. 

Free software means users of a program have the four essential freedoms: 

 The freedom to run the program as your wish, for any purpose (freedom 0). 

 The freedom to study how the program works, and adapt it to your needs (freedom 

1).  

 The freedom to redistribute copies so you can help your neighbor (freedom 2). 

 The freedom to improve the program, and release your improvements to the public, 

so that the whole community benefits (freedom 3).  

5.1.5.2 GNU 

GNU is a Unix-like operating system. It is a collection of many programs like 
applications, libraries, developer tools, even games. The development of GNU, started in 
January 1984, is known as the GNU Project. The name “GNU” is a recursive acronym for 
“GNU's Not Unix.” “GNU” is pronounced as g'noo. 

 

5.1.6 LINUX DESKTOP 

Desktop is thearea of a 
displayscreenwhereimages,windows,iconsandothergraphicalitemsappear. There are two 
popular desktop environments supported by Linux operating system are GNOME and KDE. 

5.1.6.1 GNOME  

GNOMEstands for GNU Network Object Model Environment. It was founded in 1997. 

GNOME became extremely popular due to its simplicity and ease of use. It is a graphical 

desktop environment for Linux operating system. It composed entirely of free and open 

source software. 

5.1.6.2 KDE 

KDE stands for K Desktop Environment. It is a desktop environment for Linux based 

operation system. It is an open source graphical desktop environment. KDE provides Linux 

users a graphical interface to choose their own customized desktop environment. 

 

 

5.2 FILE SYSTEM 

On a Linux system, everything is a file. A Linux system makes no difference between 
a file and a directory.A directory is just a file containing names of other files. The Linux file 
system is usually represented in a tree structure.  

https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Free_software_movement
https://en.wikipedia.org/wiki/Computer_software
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/pronunciation/pronunciation.html
https://www.gnome.org/
http://searchenterpriselinux.techtarget.com/definition/open-source
http://searchwinit.techtarget.com/definition/desktop


 

 

Linux file system is a collection of files and directories. In a file system, a file is 
represented by inode. Inode is a kind of serial number containing information about the 
actual data that makes up the file. 

5.2.1 THE SECOND EXTENDED FILE SYSTEM (EXT2) 

The Second Extended File system is an extensible and powerful file system for 

Linux. It is also the most successful file system for Linux community. It is the basis for all of 

the currently used Linux distributions. 

In EXT2 file systemthe data available in files is divided intonumber of data blocks. All 
the data blocks are of the same length. Every file's size is rounded up to an integral number 
of blocks. If a file with size 1025 bytes will occupy two 1024 byte blocks. All of the blocks in 
the file system doesn’thold the data. Some block contains the information about the structure 
of the file system. 

The inode is the basic building block in the EXT2 file system. The inode number is a 
unique number used to identify the file or directory. All the inodes are kept in a table called 
inode table. An inode describes 

 Which block of the file contains the data 

 The access rights of the file 

 The file's modification times and  

 The type of the file.  

Figure 5.2 shows the layout of the EXT2 file system.The inode number is used to read 
information or data from the file. 

 

Figure 5.2 Physical Layout of the EXT2 File system 

The EXT2 Inode 

Figure 5.3 shows the format of an EXT2 inode, amongst other information, it contains 
the following fields:  

Mode 

This holds two pieces of information. They are  

 what this inode describes  

 The permissions that users have to it.  

 



 

 

Owner Information 

This filed indicates the owner of the file or directory.  

 

Size 

This field indicates the size of the file in bytes. 

 

Timestamps 

This filed indicates the time that the inode was created and the last modified. 

 

Datablocks 

This field indicates the pointers to the blocks that contain the data. The first twelve 
are pointers to the physical blocks containing the data described by this inode and 
the last three pointers contain more and more levels of indirection.  

 

Figure 5.3 Format of an EXT2 inode 

5.2.2 VIRTUAL FILE SYSTEM 

 



 

 

 

 

 

Figure 5.4: Linux Virtual File System 

Linux includes a flexible and powerful file-handling facility called virtual file system 
(VFS). It is designed to support a wide variety of file management systems and file 
structures. VFS presents a single, uniform file system interface to user processes. 

 

Figure 5.4 indicates the key ingredients of the Linux file system strategy. To access 
any file, a user process issues a requestto VFS file scheme. The VFSconverts the request 
into an internal file system call which allows the user to access the corresponding file 
system. So the user can access any file in the directory treewithout the knowledge of the 
location of the file where it is stored. 

 

The Virtual File System (VFS) is used to manage all the file systems that are 
mounted in the Linux operating system. To do this, VFS maintains data structures that 
describe the whole (virtual) file system and the mounted file systems.VFS describes the files 
in terms of superblocks and inodes.  

5.2.2.1 THE VFS SUPERBLOCK 

Every mounted file system is represented by a VFS superblock.The VFS superblock 

contains the following information 

The superblock object consists of a number of data items. Examples include the following: 

iv) The device that this file system is mounted on 

v) The basic block size of the file system 

vi) Dirty flag, to indicate that the superblock has been changed but not written back to 

disk 

vii) File system type 

viii) Flags, such as a read-only flag 

ix) Pointer to the root of the file system directory 

x) List of open files 



 

 

xi) Semaphore for controlling access to the file system 

xii) List of superblock operations 

5.2.2.2 THE VFS INODE 

An inode is associated with each file. The inode holds all the informationabout a file 
except its name and the actual data contents of the file. Itemscontained in an inode include 
owner, group, permissions, access times for afile, size of data it holds, and number of links. 

 

The inode also includes inode operations. The methods defined for the inode include 
the following 

 

Create: Creates a new inode for a regular file. 

Lookup: Searches a directory for an inode corresponding to a file name. 

mkdir: Creates a new inode for a directory.  

 

 

5.2.3 DIFFERENT TYPES OF FILES 

The different types of files in Linux are 

 Regular files 

 Directory files 

 Special files 

a. Block file(b) 

b. Character device file(c) 

c. Named pipe file or just a pipe file(p) 

d. Symbolic link file(l) 

e. Socket file(s) 

 

o Regular files 

Regular file contains the normal data. These files are indicated with "-" at the starting 
of the line when we use ls –l command. The regular file may be  

a. A Readable file 

b. A Binary file 

c. An Image file 

d. A Compressed file 

Example 

$ ls - l 

 

-r-xr-xr-x 1 root root 20986522 2015-03-07 ex1.txt 

-rwxrwxrwx 1 root root 165 2015-02-18 10:16 abc.sh 

 

The above two files are the regular files created by the user. 



 

 

v) Directory file  

Directory contains regular files, folders and special files.This type of files is normally 
blue in color. These files are indicated with "d" at the starting of the line when we use ls –l 
command. 

Example 

$ ls - l 

 

drwxr-xr-x   2   bahratibharati   4096    2015-07-29   12:35    Documents 

drwxr-xr-x5bharatibharati4096 2015-04-18 10:46 Desktop 

vi) Special file 

 Block file  

These files are hardware files most of them are present in /dev. These files are 
indicated with "b" at the starting of the line when we use ls –l command. 

Example 

$ ls - l 

brw-rw---- 1 root disk 8, 1 2010-02-15 09:35 sda1 

brw-rw---- 1 root disk 8, 2 2010-02-15 09:35 sda2 

 Character device files 

This type of files provides a serial stream of input or output. These files are indicated 
with "c" at the starting of the line when we use ls –l command. 

Example 

$ ls–l 

 

crw-rw-rw---1  roor tty 5,0 2010-02-15 16:52 tty 

crw--w---- 1       root root       4, 0     2010-02-15      09:35   tty0 

 

 Pipe files 

The other name of pipe is a “named” pipe, which is sometimes called a FIFO. FIFO 
refers to the property that the order of bytes going in is the same coming out.These files are 
indicated with "p" at the starting of the line when we use ls –l command. 

Example 

$ ls–l 

 

prw-r----- 1 root root 0 2010-02-15 09:35 /dev/.initramfs/usplash_outfifo 

prw-r----- 1  root root0 2010-02-15 09:35 /dev/.initramfs/usplash_fifo 

 

 Symbolic link files 



 

 

These are linked files to other files. They are either directory or regular File. The 
inode number for this file and its parent files are same.These files are indicated with "l" at the 
starting of the line when we use ls –l command. 

Example 

$ ls–l 

 

lrwxrwxrwx 1 root root 24 2010-02-15 09:35 sndstat>/proc/asound/oss/sndstat 

lrwxrwxrwx1 root root15 2010-02-15 09:35 stderr -> /proc/self/fd/2 

 

 Socket files 

A socket file is used to pass information between applications for communication 
purpose. These files are indicated with "s" at the starting of the line when we use ls –l 
command. 

Example 

$ ls–l 

 

srwxrwxrwx 1 root root 0 2010-02-15 10:07 /var/run/cups/cups.sock 

srwxrwxrwx1 root root 0 2010-02-15 09:35 /var/run/samba/winbindd_privileged/pipe 

 

 

5.2.4 FILE SECURITY 

There are many security features are already built in the Linux operating system. But 

an important potential vulnerability is granting file permission. Users are not assigned the 

correct permissions to files and directories. 

 

Basic file permission 

Each file and directory has three types of users. They are 

d. Owner  

e. Group 

f. All users 

 

The three levels of file security are 

 Read – Read the content of the file or directory 

 Write – Write or modify a file or directory 

 Execute – Execute the file or directory  

 

To view the permission of the file or directory ls –l command is used. For example  

 

$ ls – l 

 

-r-xr-xr-x 1 root root20986522 2015-03-07   11.15 ex1.txt 

-rwxrwxrwx 1 rootroot165 2015-02-18 10:16 abc.sh 

 

 In the above output the first ten characters shows the file permission. The first 

character indicates the special permission flag that can vary based on the type of the file. 



 

 

The first three ‘rwx’ indicates the permission for the owner. The second three ‘rwx’ indicates 

the permission given to the group. The last three ‘rwx’ indicates the permission for all users. 

 

Binary references for file permission are 

 

V a l u e P e r m i s s i o n D e s c r i p t i o n 

0 - - - N o  p e r m i s s i o n 

1 - - x E x e c u t e  p e r m i s s i o n   

2 - w - W r i t e  p e r m i s s i o n 

3 - w x W r i t e  a n d  E x e c u t e 

4 r - - R e a d  p e r m i s s i o n 

5 r - x R e a d  a n d  E x e c u t e 

6 r w - R e a d  a n d  W r i t e 

7 r w x Read, Write and Execute 

 

 

Modifying file permission 

The command used to modify the file permission is chmod. This command is used to 

change the file permission for all the three types of user. To add permission ‘+’ is used and 

to remove permission ‘-‘ is used. 

 

Types of  user   symbol 

O w n e r u 

G r o u p g 

A l l  u s e r o  o r  a 

 

The table above shows the abbreviation of the different types of users used in chmod 

command. Let us consider the following examples. 

 

Example1 

$ls – l 

 

-r-xr-xr-x file1 

 

In the above example all the three types of users have read and execute permission only. To 

change the file permission, then type 

 

$chmodu +w file1 

$chmod g –x file1 

 

After executing the above command the permission for file1 will be changed like the 

following 

$ ls – l 

-rwxr--r-x file1 

 

Example2 

$chmod 640 file1 

 



 

 

The above command gives read and write permission to owner, read permission to group 

and no permission for all user. 

 

5.2.5 MOUNTING FILE SYSTEM 

 

All the files in Linux operating system are arranged in a tree like structure rooted with 

/. The mount command attaches a file system located on some drives to the file hierarchy. 

All the files are to be mounted before the actual use.  

 

The syntax for mounting the file is 

 $mount device-name destination-directory 

Where 

Mount    – Command used for mounting 

Device-name   – Name of the new device to be mounted 

Destination-directory – The Destination directory to which the new device is going to 

be  Mounted 

 

Example 

$mount –t cdrom /dev 

 

5.2.6 UNMOUNTING  

All the files are automatically unmounted after its use. Unmounting is nothing but 

detaching the specified file system from the file hierarchy. A file system cannot be 

unmounted when it is busy. The general form is 

 

$ unmounts device-name 

 

Example 

 

           $ unmounts dev/fd1 

  

Summary 

 Linux is a free and open source operating system. It was developed by Linus 

torvaldsa student of computer science in the University of Helsinki. 

 Important features of Linux operating system.-Multi-User, Multitasking ,Portable 

,Open Source ,Hierarchical File System , Security and Communication. 

 Linux architecture has Hardware layer ,Kernel ,Shell ,Application Software  parts. 

o The Free Software Foundation (FSF) to support the free software movement, 

which promotes the universal freedom to study, distribute, create, and modify 

the computer software. 

 GNU is a Unix-like operating system. It is a collection of many programs like 

applications, libraries, developer tools, even games. 

 The linux desktop environment are -GNOME , KDE 

 The linux file system has EXT2, and virtual file system. 

 The different types of files in Linux are Regular files , Directory files and Special files 

 The different special files are  

https://en.wikipedia.org/wiki/Free_software_movement
https://en.wikipedia.org/wiki/Computer_software
https://www.gnome.org/


 

 

o Block file(b) 

o Character device file(c) 

o Named pipe file or just a pipe file(p) 

o Symbolic link file(l) 

o  Socket file(s) 

 There are many security features are already built in the Linux operating system. But 

an important potential vulnerability is granting file permission.  

 Each file and directory has three types of users. They are Owner,Group,All users. 

 The three levels of file security are 

o Read – Read the content of the file or directory 

o Write – Write or modify a file or directory 

o Execute – Execute the file or directory  

 The mount command attaches a file system located on some drives to the file 

hierarchy. All the files are to be mounted before the actual use.  

 All the files are automatically unmounted after its use. Unmounting is nothing but 

detaching the specified file system from the file hierarchy. 

 

REVIEW QUESTIONS 

PART - A 

1. Who developed Linux? 

2. Why Linux is known as free software? 

3. Expand FSF/GNU. 

4. What is meant by GPL? 

5. List any three flavors of Linux. 

6. Define directory. 

7. Define inode number. 

8. List the different types of files used in Linux. 

9. Which command is used to modify the file permission? 

PART –B 

 List the features of Linux. 

 Differentiate Linux and Unix. 

 Write briefly about GNOME desktop. 

 Write briefly about KDE desktop. 

 Define mounting and unmounting 

PART – C 

 With neat sketch explain the architecture of Linux. 

 Explain EXT2 file system with neat diagram 

 Explain virtual file system. 

 Explain the different types of files supported in Linux. 

 Explain file security in Linux. 

 

References 

 http://tldp.org 

 www.computerhope.com 

 www.Linux.com   

http://tldp.org/
http://www.computerhope.com/
http://www.linux.com/

	1.1.1 DEFINITION
	1.1.2.3 The Third Generation

	1.1.2.3.1 Multiprogramming
	1.1.2.4 Fourth Generation

	1.1.3.4 Distributed operating System
	Distributed systems use multiple central processors to serve multiple real-time applications and multiple users. Data processing jobs are distributed among the processors accordingly.
	The processors communicate with one another through various communication lines (such as high-speed buses or telephone lines). These are referred as loosely coupled systems or distributed systems. Processors in a distributed system may vary in size an...
	The advantages of distributed systems are as follows
	1.1.3.6 Multiprogramming Operating system
	Advantages
	Disadvantages
	Hard real-time systems

	Time-sharing is a technique which enables many people, located at various terminals, to use a particular computer system at the same time. Time-sharing or multitasking is a logical extension of multiprogramming. Processor's time which is shared among...
	1.3. OPERATING SYSTEM – SERVICES
	1.3.1 PROGRAM EXECUTION
	1.3.2 I/O OPERATIONS
	An I/O subsystem comprises of I/O devices and their corresponding driver software. Drivers hide the peculiarities of specific hardware devices from the users.
	An Operating System manages the communication between user and device drivers.
	1.3.3 FILE SYSTEM MANIPULATIONS
	1.3.6 RESOURCE ALLOCATION
	In the multitasking environment, when multiple jobs are running at a time, it is the responsibility of an operating system to allocate the required resources (like as CPU, main memory, tape drive or secondary storage etc.) to each process for its bett...
	1.3.8 SYSTEM PROTECTION
	Considering a computer system having multiple users and concurrent execution of multiple processes, the various processes must be protected from each other's activities.
	1.3.9.1 Process Control
	1.3.9.2 File Management
	Some common system calls are create, delete, read, write, reposition, or close. Also, there is a need to determine the file attributes – get and set file attribute. Many times the OS provides an API to make these system calls.
	1.3.9.3 Device Management
	1.3.9.5 Communication
	These calls are used to exchange information between different processes running in the same computer or between different processes running in different systems connected with each other.
	The different communication calls are :
	 create, delete communication connection
	 send, receive messages
	1.4 OPERATING-SYSTEM STRUCTURES

	Fig  2.1 Processes in Memory
	2.1.1 PROCESS RELATIONSHIP
	Advantages
	Disadvantages
	2.2.7.1 Timesharing
	2.2.7.2 Space Sharing
	2.2.7.3 Gang Scheduling

	 Primary Memory (Main Memory)
	 Secondary Memory (Auxillary Memory)
	Primary Memory (Main Memory)
	Secondary Memory (Auxiliary Memory)
	3.1.2  Logical & Physical Address Map

	Memory allocation is a process by which computer programs and services are assigned with physical or virtual memory space. It is  the process of reserving a partial or complete portion of computer memory for the execution of progra...
	Memory allocation methods:
	 Contiguous allocation
	 Fixed partition allocation
	 Variable partition allocation
	3.1.3.1  Contiguous allocation :
	Contiguous memory allocation is  a  method  that assigns a user process  in memory blocks  having consecutive addresses.
	The main memory is usually divided into two partitions: one for the resident operating system and one for the user processes.
	In contiguous memory allocation, each process is contained in a single contiguous section of memory. In this type of allocation, relocation-register scheme is used to protect user processes from each other, and from changing operating-sy...
	Fig 3.4  Protection using Relocation & limit registers
	 User process is limited to the size of available memory
	3.1.3.2   Fixed and variable partition
	3.1.3.2.1FixedpartitionAllocation              One of the simplest methods for allocating memory is to divide memory into several fixed sized, non overlapping partitions.  This method divides the main memory into equal number of fixed sized partitions...
	We have 285 k memory available, but we can not fix p6  process, due to Internal  fragmentation.
	Example : External Fragmentation
	Main Memory
	Difference between Internal and External Fragmentation:
	.
	Fig   3.9  showing the difference between Internal and External Fragmentation
	3.1.6.5 Advantages and Disadvantages of Paging
	Advantages

	Principle  of  Working of  Virtual Memory : Address Translation using Paging:
	When the page is needed, the operating system copies it from disk to main memory, translating the virtual addresses into real addresses. The process of translating virtual addresses into real addresses is called mapping. The copying of virtual pages f...
	Advantages
	Disadvantages

	3.2.4 Page Replacement Algorithms
	In a computer operating system that uses paging for virtual memory management, page replacement algorithms are techniques that decide which memory pages to page out (swap out, write to disk) when a page of memory needs to be allocated.
	Reference String
	3.2.4.1  First In First Out (FIFO) algorithm
	3.2.4.2  Optimal Page algorithm

	3.2.4.4  The Second Chance Page Replacement
	3.2.4.5  Least Recently Used (LRU) algorithm
	 Basically  computer memory is classified as Primary Memory (Main Memory),Secondary Memory (Auxillary Memory)
	 Primary memory holds only those data and instructions on which computer is currently working.
	 Memory allocation methods: Contiguous allocation,Fixed partition allocation,Variable partition allocation
	 When the page is needed, the operating system copies it from disk to main memory, translating the virtual addresses into real addresses. The process of translating virtual addresses into real addresses is called mapping. The copying of virtual pages...
	 page replacement algorithms are techniques that decide which memory pages to page out (swap out, write to disk) when a page of memory needs to be allocated.
	 The different algorithms are --First In First Out (FIFO) algorithm, Optimal Page algorithm, NRU(Not Recently Used) Page Replacement Algorithm , The Second Chance Page Replacement , Least Recently Used (LRU) algorithm
	4.1.1  Disk Structure
	 Mirroring
	 Parity
	Standard RAID levels
	Fig 4.12  RAID 0
	Advantages
	Disadvantages
	Advantages
	Disadvantages
	Advantages
	 Read data transactions are very fast while write data transactions are somewhat slower (due to the parity that has to be calculated).
	Disadvantages
	Advantages
	Disadvantages

	4.2  File Management
	4.2.1  File  concept
	4.2.1.1 File definition:
	4.2.1.2 File Structure
	4.2.1.3 File Type
	Ordinary files These are the files that contain user information. These may have text, databases or executable program. The user can apply various operations on such files like add, modify, delete or even remove the entire file.
	Directory files These files contain list of file names and other information related to these files.
	Special files These files are also known as device files. These files represent physical device like disks, terminals, printers, networks, tape drive etc.

	4.2.2  File Attributes
	4.2.3   File Operations
	4.2.4  Directory Structure
	• Root  Directory  is  the top directory in a file system. For example, in DOS systems the root directory is called  \ . The directory at the highest level is called the root directory
	• To indicate a particular file using text, we specify that file’s path, which is the series of directories through which you must go to find the file
	• An absolute path name begins at the root and specifies each step down the tree until it reaches the desired file or directory
	• A relative path name begins from the current working directory
	Uses of Directories :
	Fig.  4.22   Tree structured Directory
	4.2.5 File Allocation Methods
	File Allocation :
	1. Contiguous File Allocation:
	4.2.6  File Access Methods
	Sequential access
	Direct/Random access
	Indexed sequential access

	4.2.7  File System Structure
	4.3.1  Security Threats
	Security Threats can be classified into i) Program Threats  ii) System Threats as follows.
	4.3.1.1 Program Threats
	4.3.1.2  System Threats
	4.3.2.2  Authentication
	User Authentication  is carried through following methods:
	i) Passwords
	ii) Encrypted Passwords
	iii) One Time passwords
	Summary
	 Disks provide the bulk of secondary storage for modern computer systems.
	 Disk scheduling is done by operating systems to schedule I/O requests arriving for disk.i.e. I/O scheduling.
	 Disk Drive Performance parameters:Seek Time,Rotational Latency,.Transfer Time,Disk Access Time, Disk Response Time.
	         RAID 5: This level is based on block-level striping with parity
	         RAID 6: This technique is similar to RAID 5 but includes a second parity scheme that is distributed across the drives in the array.
	 File Attributes are Name,  Identifier, Type, Location, Size,Protection, Time, date, and user identification:
	 File Operations areCreating a file,Writing a file. Reading a file. Repositioning within a file. Deleting a file. Truncating a file.
	 File Access Methods- refers to the manner in which the records of a file may be accessed. There are several ways to access files −Sequential access,Direct/Random access,Indexed sequential access
	 Disk formatting is the process of preparing a data storage device such as a hard disk drive, solid-state drive, floppy disk or USB flash drive for initial use.
	 Disk Formatting involves three different processes :Low-level formatting or Physical formatting - Partitioning,High-level formatting or Logical formatting.
	 If a user program made these process do malicious tasks, then it is known as Program Threats- Trojan Horse Trap Door Logic Bomb Virus .
	 System threats refers to misuse of system services and network connections to put user in trouble. Following is the list of some well-known system threats.Worm − Port Scanning − Denial of Service
	 User Authentication  is carried through following methods: Passwords,Encrypted Passwords,One Time passwords, Bio-metrics
	5.1.2 FEATURES OF LINUX
	5.1.6 LINUX DESKTOP
	Desktop is thearea of a displayscreenwhereimages,windows,iconsandothergraphicalitemsappear. There are two popular desktop environments supported by Linux operating system are GNOME and KDE.
	5.1.6.1 GNOME

	5.2.1 THE SECOND EXTENDED FILE SYSTEM (EXT2)
	The Second Extended File system is an extensible and powerful file system for Linux. It is also the most successful file system for Linux community. It is the basis for all of the currently used Linux distributions.
	The EXT2 Inode
	5.2.2.1 THE VFS SUPERBLOCK
	5.2.2.2 THE VFS INODE

	v) Directory file
	vi) Special file
	 Block file
	 Character device files
	 Pipe files
	 Symbolic link files
	 Socket files
	 Linux is a free and open source operating system. It was developed by Linus torvaldsa student of computer science in the University of Helsinki.
	 The linux file system has EXT2, and virtual file system.


